Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 51181 by ajfour last updated on 24/Dec/18

Commented by ajfour last updated on 24/Dec/18

Find parameters a and b of maximum  area ellipse within sector of radius  r and central angle 𝛂.

$${Find}\:{parameters}\:{a}\:{and}\:{b}\:{of}\:{maximum} \\ $$$${area}\:{ellipse}\:{within}\:{sector}\:{of}\:{radius} \\ $$$$\boldsymbol{{r}}\:{and}\:{central}\:{angle}\:\boldsymbol{\alpha}. \\ $$

Answered by mr W last updated on 24/Dec/18

Commented by mr W last updated on 25/Dec/18

eqn. of ellipse:  (x^2 /a^2 )+(((yβˆ’c)^2 )/b^2 )=1  eqn. of OQ:  y=x tan ((Ο€/2)βˆ’(Ξ±/2))=(x/(tan (Ξ±/2)))=mx  β‡’a^2 m^2 +b^2 =c^2   eqn. of circle:  x^2 +y^2 =r^2   ((r^2 βˆ’y^2 )/a^2 )+(((yβˆ’c)^2 )/b^2 )=1    case 1: α≀90Β°  (((rβˆ’c)^2 )/b^2 )=1  β‡’b^2 =(rβˆ’c)^2   β‡’a^2 m^2 =c^2 βˆ’(rβˆ’c)^2 =r(2cβˆ’r)  P=a^2 b^2 m^2 =r(2cβˆ’r)(rβˆ’c)^2   (dP/dc)=0  2(rβˆ’c)^2 βˆ’(2cβˆ’r)2(rβˆ’c)=0  β‡’c=((2r)/3)  β‡’b^2 =(r^2 /9)  β‡’a^2 =((c^2 βˆ’b^2 )/m^2 )=(r^2 /(3m^2 ))    case 2: 90°≀α≀180Β°  b^2 r^2 βˆ’b^2 y^2 +a^2 (y^2 βˆ’2cy+c^2 )=a^2 b^2   (a^2 βˆ’b^2 )y^2 βˆ’2a^2 cy+a^2 c^2 +b^2 (r^2 βˆ’a^2 )=0  D=4a^4 c^2 βˆ’4(a^2 βˆ’b^2 )(a^2 c^2 +b^2 r^2 βˆ’a^2 b^2 )=0  β‡’(a^2 βˆ’b^2 )(r^2 βˆ’a^2 )=a^2 c^2   β‡’(a^2 βˆ’b^2 )(r^2 βˆ’a^2 )=a^2 (a^2 m^2 +b^2 )  let P=a^2 b^2   β‡’(a^2 βˆ’(P/a^2 ))(r^2 βˆ’a^2 )=a^2 (a^2 m^2 +(P/a^2 ))  β‡’(a^4 βˆ’P)(r^2 βˆ’a^2 )=a^2 (a^4 m^2 +P)  (dP/da)=0  (a^4 βˆ’P)(βˆ’2a)+(4a^3 )(r^2 βˆ’a^2 )=2a(a^4 m^2 +P)+a^2 (4a^3 m^2 )  3a^2 (m^2 +1)=2r^2   β‡’a^2 =((2r^2 )/(3(m^2 +1)))β‡’a=r(√(2/3)) sin (Ξ±/2)  β‡’(a^2 βˆ’b^2 )(r^2 βˆ’a^2 )=a^2 (a^2 m^2 +b^2 )  β‡’b^2 r^2 =a^2 [r^2 βˆ’a^2 (m^2 +1)]  β‡’b^2 =(a^2 /3)=((2r^2 )/(9(m^2 +1)))β‡’b=r((√2)/3) sin (Ξ±/2)  β‡’c^2 =a^2 m^2 +b^2 =((2(3m^2 +1)r^2 )/(9(m^2 +1)))β‡’c=((r(√(2(2+cos Ξ±))))/3)  condition: c+b≀r  ((r(√(2(2+cos Ξ±))))/3)+r((√2)/3) sin (Ξ±/2)≀r  β‡’sin (Ξ±/2)β‰₯(1/(√2)) β‡’(Ξ±/2)β‰₯(Ο€/4) β‡’Ξ±β‰₯(Ο€/2)

$${eqn}.\:{of}\:{ellipse}: \\ $$$$\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{\left({y}βˆ’{c}\right)^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$${eqn}.\:{of}\:{OQ}: \\ $$$${y}={x}\:\mathrm{tan}\:\left(\frac{\pi}{\mathrm{2}}βˆ’\frac{\alpha}{\mathrm{2}}\right)=\frac{{x}}{\mathrm{tan}\:\frac{\alpha}{\mathrm{2}}}={mx} \\ $$$$\Rightarrow{a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} ={c}^{\mathrm{2}} \\ $$$${eqn}.\:{of}\:{circle}: \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\frac{{r}^{\mathrm{2}} βˆ’{y}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{\left({y}βˆ’{c}\right)^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$ \\ $$$${case}\:\mathrm{1}:\:\alpha\leqslant\mathrm{90}Β° \\ $$$$\frac{\left({r}βˆ’{c}\right)^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$$\Rightarrow{b}^{\mathrm{2}} =\left({r}βˆ’{c}\right)^{\mathrm{2}} \\ $$$$\Rightarrow{a}^{\mathrm{2}} {m}^{\mathrm{2}} ={c}^{\mathrm{2}} βˆ’\left({r}βˆ’{c}\right)^{\mathrm{2}} ={r}\left(\mathrm{2}{c}βˆ’{r}\right) \\ $$$${P}={a}^{\mathrm{2}} {b}^{\mathrm{2}} {m}^{\mathrm{2}} ={r}\left(\mathrm{2}{c}βˆ’{r}\right)\left({r}βˆ’{c}\right)^{\mathrm{2}} \\ $$$$\frac{{dP}}{{dc}}=\mathrm{0} \\ $$$$\mathrm{2}\left({r}βˆ’{c}\right)^{\mathrm{2}} βˆ’\left(\mathrm{2}{c}βˆ’{r}\right)\mathrm{2}\left({r}βˆ’{c}\right)=\mathrm{0} \\ $$$$\Rightarrow{c}=\frac{\mathrm{2}{r}}{\mathrm{3}} \\ $$$$\Rightarrow{b}^{\mathrm{2}} =\frac{{r}^{\mathrm{2}} }{\mathrm{9}} \\ $$$$\Rightarrow{a}^{\mathrm{2}} =\frac{{c}^{\mathrm{2}} βˆ’{b}^{\mathrm{2}} }{{m}^{\mathrm{2}} }=\frac{{r}^{\mathrm{2}} }{\mathrm{3}{m}^{\mathrm{2}} } \\ $$$$ \\ $$$${case}\:\mathrm{2}:\:\mathrm{90}Β°\leqslant\alpha\leqslant\mathrm{180}Β° \\ $$$${b}^{\mathrm{2}} {r}^{\mathrm{2}} βˆ’{b}^{\mathrm{2}} {y}^{\mathrm{2}} +{a}^{\mathrm{2}} \left({y}^{\mathrm{2}} βˆ’\mathrm{2}{cy}+{c}^{\mathrm{2}} \right)={a}^{\mathrm{2}} {b}^{\mathrm{2}} \\ $$$$\left({a}^{\mathrm{2}} βˆ’{b}^{\mathrm{2}} \right){y}^{\mathrm{2}} βˆ’\mathrm{2}{a}^{\mathrm{2}} {cy}+{a}^{\mathrm{2}} {c}^{\mathrm{2}} +{b}^{\mathrm{2}} \left({r}^{\mathrm{2}} βˆ’{a}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$${D}=\mathrm{4}{a}^{\mathrm{4}} {c}^{\mathrm{2}} βˆ’\mathrm{4}\left({a}^{\mathrm{2}} βˆ’{b}^{\mathrm{2}} \right)\left({a}^{\mathrm{2}} {c}^{\mathrm{2}} +{b}^{\mathrm{2}} {r}^{\mathrm{2}} βˆ’{a}^{\mathrm{2}} {b}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\Rightarrow\left({a}^{\mathrm{2}} βˆ’{b}^{\mathrm{2}} \right)\left({r}^{\mathrm{2}} βˆ’{a}^{\mathrm{2}} \right)={a}^{\mathrm{2}} {c}^{\mathrm{2}} \\ $$$$\Rightarrow\left({a}^{\mathrm{2}} βˆ’{b}^{\mathrm{2}} \right)\left({r}^{\mathrm{2}} βˆ’{a}^{\mathrm{2}} \right)={a}^{\mathrm{2}} \left({a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} \right) \\ $$$${let}\:{P}={a}^{\mathrm{2}} {b}^{\mathrm{2}} \\ $$$$\Rightarrow\left({a}^{\mathrm{2}} βˆ’\frac{{P}}{{a}^{\mathrm{2}} }\right)\left({r}^{\mathrm{2}} βˆ’{a}^{\mathrm{2}} \right)={a}^{\mathrm{2}} \left({a}^{\mathrm{2}} {m}^{\mathrm{2}} +\frac{{P}}{{a}^{\mathrm{2}} }\right) \\ $$$$\Rightarrow\left({a}^{\mathrm{4}} βˆ’{P}\right)\left({r}^{\mathrm{2}} βˆ’{a}^{\mathrm{2}} \right)={a}^{\mathrm{2}} \left({a}^{\mathrm{4}} {m}^{\mathrm{2}} +{P}\right) \\ $$$$\frac{{dP}}{{da}}=\mathrm{0} \\ $$$$\left({a}^{\mathrm{4}} βˆ’{P}\right)\left(βˆ’\mathrm{2}{a}\right)+\left(\mathrm{4}{a}^{\mathrm{3}} \right)\left({r}^{\mathrm{2}} βˆ’{a}^{\mathrm{2}} \right)=\mathrm{2}{a}\left({a}^{\mathrm{4}} {m}^{\mathrm{2}} +{P}\right)+{a}^{\mathrm{2}} \left(\mathrm{4}{a}^{\mathrm{3}} {m}^{\mathrm{2}} \right) \\ $$$$\mathrm{3}{a}^{\mathrm{2}} \left({m}^{\mathrm{2}} +\mathrm{1}\right)=\mathrm{2}{r}^{\mathrm{2}} \\ $$$$\Rightarrow{a}^{\mathrm{2}} =\frac{\mathrm{2}{r}^{\mathrm{2}} }{\mathrm{3}\left({m}^{\mathrm{2}} +\mathrm{1}\right)}\Rightarrow{a}={r}\sqrt{\frac{\mathrm{2}}{\mathrm{3}}}\:\mathrm{sin}\:\frac{\alpha}{\mathrm{2}} \\ $$$$\Rightarrow\left({a}^{\mathrm{2}} βˆ’{b}^{\mathrm{2}} \right)\left({r}^{\mathrm{2}} βˆ’{a}^{\mathrm{2}} \right)={a}^{\mathrm{2}} \left({a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} \right) \\ $$$$\Rightarrow{b}^{\mathrm{2}} {r}^{\mathrm{2}} ={a}^{\mathrm{2}} \left[{r}^{\mathrm{2}} βˆ’{a}^{\mathrm{2}} \left({m}^{\mathrm{2}} +\mathrm{1}\right)\right] \\ $$$$\Rightarrow{b}^{\mathrm{2}} =\frac{{a}^{\mathrm{2}} }{\mathrm{3}}=\frac{\mathrm{2}{r}^{\mathrm{2}} }{\mathrm{9}\left({m}^{\mathrm{2}} +\mathrm{1}\right)}\Rightarrow{b}={r}\frac{\sqrt{\mathrm{2}}}{\mathrm{3}}\:\mathrm{sin}\:\frac{\alpha}{\mathrm{2}} \\ $$$$\Rightarrow{c}^{\mathrm{2}} ={a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} =\frac{\mathrm{2}\left(\mathrm{3}{m}^{\mathrm{2}} +\mathrm{1}\right){r}^{\mathrm{2}} }{\mathrm{9}\left({m}^{\mathrm{2}} +\mathrm{1}\right)}\Rightarrow{c}=\frac{{r}\sqrt{\mathrm{2}\left(\mathrm{2}+\mathrm{cos}\:\alpha\right)}}{\mathrm{3}} \\ $$$${condition}:\:{c}+{b}\leqslant{r} \\ $$$$\frac{{r}\sqrt{\mathrm{2}\left(\mathrm{2}+\mathrm{cos}\:\alpha\right)}}{\mathrm{3}}+{r}\frac{\sqrt{\mathrm{2}}}{\mathrm{3}}\:\mathrm{sin}\:\frac{\alpha}{\mathrm{2}}\leqslant{r} \\ $$$$\Rightarrow\mathrm{sin}\:\frac{\alpha}{\mathrm{2}}\geqslant\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:\Rightarrow\frac{\alpha}{\mathrm{2}}\geqslant\frac{\pi}{\mathrm{4}}\:\Rightarrow\alpha\geqslant\frac{\pi}{\mathrm{2}} \\ $$

Commented by mr W last updated on 24/Dec/18

Commented by mr W last updated on 24/Dec/18

Commented by mr W last updated on 24/Dec/18

Commented by ajfour last updated on 25/Dec/18

Detailed and extremely Good  solution Sir! Thank you plentiful.

$${Detailed}\:{and}\:{extremely}\:\mathcal{G}{ood} \\ $$$${solution}\:{Sir}!\:{Thank}\:{you}\:{plentiful}. \\ $$

Answered by MJS last updated on 24/Dec/18

using my beloved coordinate method I get  a=((√6)/3)rsin (α/2)  b=((√2)/3)rsin (α/2)

$$\mathrm{using}\:\mathrm{my}\:\mathrm{beloved}\:\mathrm{coordinate}\:\mathrm{method}\:\mathrm{I}\:\mathrm{get} \\ $$$${a}=\frac{\sqrt{\mathrm{6}}}{\mathrm{3}}{r}\mathrm{sin}\:\frac{\alpha}{\mathrm{2}} \\ $$$${b}=\frac{\sqrt{\mathrm{2}}}{\mathrm{3}}{r}\mathrm{sin}\:\frac{\alpha}{\mathrm{2}} \\ $$

Commented by MJS last updated on 24/Dec/18

youβ€²re right. thank you for checking!

$$\mathrm{you}'\mathrm{re}\:\mathrm{right}.\:\mathrm{thank}\:\mathrm{you}\:\mathrm{for}\:\mathrm{checking}! \\ $$

Commented by mr W last updated on 24/Dec/18

answer is correct sir. but this is only  for obtuse angle Ξ±.

$${answer}\:{is}\:{correct}\:{sir}.\:{but}\:{this}\:{is}\:{only} \\ $$$${for}\:{obtuse}\:{angle}\:\alpha. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com