Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 51186 by Abdo msup. last updated on 24/Dec/18

calculate ∫_0 ^1   (([nx])/(2x+1))dx

$${calculate}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\left[{nx}\right]}{\mathrm{2}{x}+\mathrm{1}}{dx} \\ $$

Commented by Abdo msup. last updated on 25/Dec/18

let A_n =∫_0 ^1   (([nx])/(2x+1))dx ⇒A_n =Σ_(k=0) ^(n−1)  ∫_(k/n) ^((k+1)/n)    (k/(2x+1))  ([nx]=k) ⇒A_n =(1/2) Σ_(k=0) ^(n−1)  k [ln(2x+1)]_(k/n) ^((k+1)/n)   =(1/2) Σ_(k=0) ^(n−1)  k {ln(((2(k+1))/n)+1)−ln(((2k)/n)+1)}  =(1/2)Σ_(k=0) ^(n−1) k{ ln(2k+n+2)+ln(2k+n)}  =(1/2)Σ_(k=0) ^(n−1)  k ln(((2k+n +2)/(2k+n))) ⇒  A_n =(1/2){ln(((n+4)/(n+3)))+2ln(((n+6)/(n+4)))+3ln(((n+8)/(n+6)))+...  +(n−1)ln(((3n)/(3n−2)))}

$${let}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{\left[{nx}\right]}{\mathrm{2}{x}+\mathrm{1}}{dx}\:\Rightarrow{A}_{{n}} =\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:\int_{\frac{{k}}{{n}}} ^{\frac{{k}+\mathrm{1}}{{n}}} \:\:\:\frac{{k}}{\mathrm{2}{x}+\mathrm{1}} \\ $$$$\left(\left[{nx}\right]={k}\right)\:\Rightarrow{A}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}}\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{k}\:\left[{ln}\left(\mathrm{2}{x}+\mathrm{1}\right)\right]_{\frac{{k}}{{n}}} ^{\frac{{k}+\mathrm{1}}{{n}}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\:\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{k}\:\left\{{ln}\left(\frac{\mathrm{2}\left({k}+\mathrm{1}\right)}{{n}}+\mathrm{1}\right)−{ln}\left(\frac{\mathrm{2}{k}}{{n}}+\mathrm{1}\right)\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} {k}\left\{\:{ln}\left(\mathrm{2}{k}+{n}+\mathrm{2}\right)+{ln}\left(\mathrm{2}{k}+{n}\right)\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\sum_{{k}=\mathrm{0}} ^{{n}−\mathrm{1}} \:{k}\:{ln}\left(\frac{\mathrm{2}{k}+{n}\:+\mathrm{2}}{\mathrm{2}{k}+{n}}\right)\:\Rightarrow \\ $$$${A}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}}\left\{{ln}\left(\frac{{n}+\mathrm{4}}{{n}+\mathrm{3}}\right)+\mathrm{2}{ln}\left(\frac{{n}+\mathrm{6}}{{n}+\mathrm{4}}\right)+\mathrm{3}{ln}\left(\frac{{n}+\mathrm{8}}{{n}+\mathrm{6}}\right)+...\right. \\ $$$$\left.+\left({n}−\mathrm{1}\right){ln}\left(\frac{\mathrm{3}{n}}{\mathrm{3}{n}−\mathrm{2}}\right)\right\} \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 24/Dec/18

∫_0 ^(1/n) (([nx])/(2(x+(1/2))))dx+∫_(1/n) ^1  (([nx])/(2(x+(1/2))))dx  ∫_0 ^(1/n) (0/(2(x+(1/2))))dx+∫_(1/n) ^1 (1/(2(x+(1/2))))dx  (1/2)∣ln(x+(1/2))∣_(1/n) ^1   =(1/2){ln((3/2))−ln((1/n)+(1/2))}  =(1/2)ln(((3/2)/((2+n)/(2n))))  (1/2)ln(((3×2n)/(2(2+n))))  =(1/2)ln(((3n)/(2+n)))

$$\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{{n}}} \frac{\left[{nx}\right]}{\mathrm{2}\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)}{dx}+\int_{\frac{\mathrm{1}}{{n}}} ^{\mathrm{1}} \:\frac{\left[{nx}\right]}{\mathrm{2}\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)}{dx} \\ $$$$\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{{n}}} \frac{\mathrm{0}}{\mathrm{2}\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)}{dx}+\int_{\frac{\mathrm{1}}{{n}}} ^{\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)}{dx} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\mid{ln}\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)\mid_{\frac{\mathrm{1}}{{n}}} ^{\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left\{{ln}\left(\frac{\mathrm{3}}{\mathrm{2}}\right)−{ln}\left(\frac{\mathrm{1}}{{n}}+\frac{\mathrm{1}}{\mathrm{2}}\right)\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\frac{\frac{\mathrm{3}}{\mathrm{2}}}{\frac{\mathrm{2}+{n}}{\mathrm{2}{n}}}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\frac{\mathrm{3}×\mathrm{2}{n}}{\mathrm{2}\left(\mathrm{2}+{n}\right)}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\frac{\mathrm{3}{n}}{\mathrm{2}+{n}}\right) \\ $$$$ \\ $$

Commented by Abdo msup. last updated on 25/Dec/18

sir Tanmay  if  (1/n)≤x≤1  ⇒1≤nx≤n  so [nx] is  not equal to 1!!

$${sir}\:{Tanmay}\:\:{if}\:\:\frac{\mathrm{1}}{{n}}\leqslant{x}\leqslant\mathrm{1}\:\:\Rightarrow\mathrm{1}\leqslant{nx}\leqslant{n}\:\:{so}\:\left[{nx}\right]\:{is} \\ $$$${not}\:{equal}\:{to}\:\mathrm{1}!! \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 25/Dec/18

what is the mesning of   1≤nx

$${what}\:{is}\:{the}\:{mesning}\:{of}\:\:\:\mathrm{1}\leqslant{nx}\:\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com