Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 51431 by Tawa1 last updated on 26/Dec/18

Find  x and y      x^2  + y^2   =  25     ......  (i)      x^3  + y^3   =  91   ....... (ii)

Findxandyx2+y2=25......(i)x3+y3=91.......(ii)

Commented by Tawa1 last updated on 27/Dec/18

God bless you sir.

Godblessyousir.

Commented by Abdo msup. last updated on 26/Dec/18

let x+y =s and xy =p  we have s^2 =x^2  +y^2 +2xy  =25 +2p  slso  s^3 =x^3  +y^3  +3xy(x+y)  =91 +3sp ⇒s^2 −2p=25 and s^3 −3sp =91 ⇒  s^3 −2ps =25 s ⇒s^3 −3ps +ps =25s ⇒  91 +ps=25s ⇒(25−p)s=91 ⇒  (25−p)^2 s^2  =91^2  ⇒(25−p)^2 (2p+25)=91^2  ⇒  (p^2 −50p +25^2 )(2p+25)=91^2  ⇒  2p^3  +25p^2 −100p^2 −50.25p +2.25^2 p +25^3 =91^2  ⇒  2p^3 −75p^2  +25^3 −91^2 =0  ⇒  p^3  −((75)/2)p^2  +((25^3 −91^2 )/2) =0  we must solve the  equation x^3  +ax^2  +b =0    let use the changement  x =t −(a/3)  (e) ⇔ t^3  −3t^2 .(a/3) +3t.(a^2 /9) −(a^3 /(27)) +a(t^2 −((2at)/3) +(a^2 /9))+b=0  ⇒t^3 −at^2  + ((a^2 t)/3) −(a^3 /(27)) +at^2   −2((a^2 t)/3) +(a^3 /9) +b =0 ⇒  t^3  −(a^2 /3)t  +((2a^3 )/9) +b =0  after we use the chsngement  t =u+v....be continued...

letx+y=sandxy=pwehaves2=x2+y2+2xy=25+2pslsos3=x3+y3+3xy(x+y)=91+3sps22p=25ands33sp=91s32ps=25ss33ps+ps=25s91+ps=25s(25p)s=91(25p)2s2=912(25p)2(2p+25)=912(p250p+252)(2p+25)=9122p3+25p2100p250.25p+2.252p+253=9122p375p2+253912=0p3752p2+2539122=0wemustsolvetheequationx3+ax2+b=0letusethechangementx=ta3(e)t33t2.a3+3t.a29a327+a(t22at3+a29)+b=0t3at2+a2t3a327+at22a2t3+a39+b=0t3a23t+2a39+b=0afterweusethechsngementt=u+v....becontinued...

Commented by Abdo msup. last updated on 26/Dec/18

after finding  s and p  xand y are roots of  X^2  −sX +p =0

afterfindingsandpxandyarerootsofX2sX+p=0

Answered by mr W last updated on 26/Dec/18

let x+y=a, xy=b  x^3 +y^3 =(x+y)(x^2 +y^2 −xy)  ⇒91=(x+y)(25−xy)  ⇒91=a(25−b)   ...(1)  x^2 +y^2 =(x+y)^2 −2xy  ⇒25=(x+y)^2 −2xy  ⇒25=a^2 −2b   ...(2)  from (2):  ⇒b=((a^2 −25)/2)  91=a(25−((a^2 −25)/2))  a^3 −75a+182=0  (a−7)(a^2 +7a−26)=0  ⇒a=7  ⇒a=((−7±(√(153)))/2)    with a=7:  b=((49−25)/2)=12  x,y are roots of  t^2 −7t+12=0  (t−3)(t−4)=0  ⇒x,y=3,4    with a=((−7−(√(153)))/2)  ⇒b=((1−7a)/2)=((51+7(√(153)))/4)  x,y are roots of  t^2 +((7+(√(153)))/2)t+((51+7(√(153)))/4)=0  ⇒x,y=(1/4)(−7−(√(153))±i(√(2+14(√(153)))))    with a=((−7+(√(153)))/2)  ⇒b=((1−7a)/2)=((51−7(√(153)))/4)  x,y are roots of  t^2 +((7−(√(153)))/2)t+((51−7(√(153)))/4)=0  ⇒x,y=(1/4)(−7+(√(153))±(√(−2+14(√(153)))))  ⇒x,y≈−1.928, 4.613

letx+y=a,xy=bx3+y3=(x+y)(x2+y2xy)91=(x+y)(25xy)91=a(25b)...(1)x2+y2=(x+y)22xy25=(x+y)22xy25=a22b...(2)from(2):b=a225291=a(25a2252)a375a+182=0(a7)(a2+7a26)=0a=7a=7±1532witha=7:b=49252=12x,yarerootsoft27t+12=0(t3)(t4)=0x,y=3,4witha=71532b=17a2=51+71534x,yarerootsoft2+7+1532t+51+71534=0x,y=14(7153±i2+14153)witha=7+1532b=17a2=5171534x,yarerootsoft2+71532t+5171534=0x,y=14(7+153±2+14153)x,y1.928,4.613

Commented by Tawa1 last updated on 27/Dec/18

God bless you sir

Godblessyousir

Answered by peter frank last updated on 26/Dec/18

let  a=x^2   b=y^2   a+b=25....(i)×x  ax+by=91...(ii)  ax+bx=25x  ax+by=91  b(x−y)=25x−91...(iii)  a+b=25....(i)×y  ax+by=91...(ii)  ay+by=25y  ax+by=91  a(y−x)=25y−91....(iv)  b(x−y)=25x−91...(iii)  −a(x−y)=−25y+91....(iv)  (x−y)[−a+b]=25(x−y)  b−a=25......v    ....

leta=x2b=y2a+b=25....(i)×xax+by=91...(ii)ax+bx=25xax+by=91b(xy)=25x91...(iii)a+b=25....(i)×yax+by=91...(ii)ay+by=25yax+by=91a(yx)=25y91....(iv)b(xy)=25x91...(iii)a(xy)=25y+91....(iv)(xy)[a+b]=25(xy)ba=25......v....

Commented by Tawa1 last updated on 27/Dec/18

God bless you sir

Godblessyousir

Answered by behi83417@gmail.com last updated on 27/Dec/18

x+y=p,xy=q  ⇒ { ((p^2 −2q=25)),((p(p^2 −3q)=91)) :}⇒ { ((3p^3 −6pq=75p)),((2p^3 −6pq=182)) :}  ⇒p^3 −75p+182=0  ⇒(p−7)(p^2 +7p−26)=0  ⇒p=7,[((−7±(√(49+4×26)))/2)=2.68,−9.68]  p=7⇒49−2q=25⇒q=12  p=2.68⇒7.18−2q=25⇒q=−8.91  p=−9.68⇒93.7−2q=25⇒q=34.35  1.[p=7,q=12]⇒z^2 −7z+12=0  ⇒[z_1 =x=3,z_2 =y=4]∨[x=4,y=3]  2.[p=2.68,q=−8.91]⇒z^2 −2.68z−8.91=0  ⇒[z_(1,2) =x∨y=((2.68±(√(2.68^2 +4×8.91)))/2)]  ⇒[z_(1,2) =x∨y= 4.61 ∨−1.93]  3.[p=−9.69,q=34.35]⇒z^2 +9.69z+34.35=0  ⇒[z_(1,2) =((−9.69±(√(9.69^2 −4×34.35)))/2)]  ⇒[z_(1,2) =x∨y=−4.85±3.3i]   .■

x+y=p,xy=q{p22q=25p(p23q)=91{3p36pq=75p2p36pq=182p375p+182=0(p7)(p2+7p26)=0p=7,[7±49+4×262=2.68,9.68]p=7492q=25q=12p=2.687.182q=25q=8.91p=9.6893.72q=25q=34.351.[p=7,q=12]z27z+12=0[z1=x=3,z2=y=4][x=4,y=3]2.[p=2.68,q=8.91]z22.68z8.91=0[z1,2=xy=2.68±2.682+4×8.912][z1,2=xy=4.611.93]3.[p=9.69,q=34.35]z2+9.69z+34.35=0[z1,2=9.69±9.6924×34.352][z1,2=xy=4.85±3.3i].

Commented by Tawa1 last updated on 27/Dec/18

God bless you sir

Godblessyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com