Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 51535 by ajfour last updated on 28/Dec/18

Commented by ajfour last updated on 28/Dec/18

If BC be parallel to x-axis, find  coordinates of A.

$${If}\:{BC}\:{be}\:{parallel}\:{to}\:{x}-{axis},\:{find} \\ $$$${coordinates}\:{of}\:{A}. \\ $$

Answered by mr W last updated on 28/Dec/18

B((a/2), −(√(R^2 −(a^2 /4))), 0)  C(−(a/2), −(√(R^2 −(a^2 /4))), 0)  x_A ^2 +y_A ^2 +z_A ^2 =R^2    ...(i)  (x_A −(a/2))^2 +(y_A +(√(R^2 −(a^2 /4))))^2 +z_A ^2 =c^2    ...(ii)  (x_A +(a/2))^2 +(y_A +(√(R^2 −(a^2 /4))))^2 +z_A ^2 =b^2    ...(iii)    (iii)−(ii):  2ax_A =b^2 −c^2   ⇒x_A =((b^2 −c^2 )/(2a))  (iii)−(i):  (√(R^2 −(a^2 /4)))(2y_A +(√(R^2 −(a^2 /4))))+(a/2)(2x_A +(a/2))=b^2 −R^2   (√(4R^2 −a^2 ))(4y_A +(√(4R^2 −a^2 )))=2b^2 +2c^2 −a^2 −4R^2   2y_A (√(4R^2 −a^2 ))=b^2 +c^2 −4R^2   ⇒y_A =((b^2 +c^2 −4R^2 )/(2(√(4R^2 −a^2 ))))  ⇒z_A =(√(R^2 −x_A ^2 −y_A ^2 ))

$${B}\left(\frac{{a}}{\mathrm{2}},\:−\sqrt{{R}^{\mathrm{2}} −\frac{{a}^{\mathrm{2}} }{\mathrm{4}}},\:\mathrm{0}\right) \\ $$$${C}\left(−\frac{{a}}{\mathrm{2}},\:−\sqrt{{R}^{\mathrm{2}} −\frac{{a}^{\mathrm{2}} }{\mathrm{4}}},\:\mathrm{0}\right) \\ $$$${x}_{{A}} ^{\mathrm{2}} +{y}_{{A}} ^{\mathrm{2}} +{z}_{{A}} ^{\mathrm{2}} ={R}^{\mathrm{2}} \:\:\:...\left({i}\right) \\ $$$$\left({x}_{{A}} −\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}} +\left({y}_{{A}} +\sqrt{{R}^{\mathrm{2}} −\frac{{a}^{\mathrm{2}} }{\mathrm{4}}}\right)^{\mathrm{2}} +{z}_{{A}} ^{\mathrm{2}} ={c}^{\mathrm{2}} \:\:\:...\left({ii}\right) \\ $$$$\left({x}_{{A}} +\frac{{a}}{\mathrm{2}}\right)^{\mathrm{2}} +\left({y}_{{A}} +\sqrt{{R}^{\mathrm{2}} −\frac{{a}^{\mathrm{2}} }{\mathrm{4}}}\right)^{\mathrm{2}} +{z}_{{A}} ^{\mathrm{2}} ={b}^{\mathrm{2}} \:\:\:...\left({iii}\right) \\ $$$$ \\ $$$$\left({iii}\right)−\left({ii}\right): \\ $$$$\mathrm{2}{ax}_{{A}} ={b}^{\mathrm{2}} −{c}^{\mathrm{2}} \\ $$$$\Rightarrow{x}_{{A}} =\frac{{b}^{\mathrm{2}} −{c}^{\mathrm{2}} }{\mathrm{2}{a}} \\ $$$$\left({iii}\right)−\left({i}\right): \\ $$$$\sqrt{{R}^{\mathrm{2}} −\frac{{a}^{\mathrm{2}} }{\mathrm{4}}}\left(\mathrm{2}{y}_{{A}} +\sqrt{{R}^{\mathrm{2}} −\frac{{a}^{\mathrm{2}} }{\mathrm{4}}}\right)+\frac{{a}}{\mathrm{2}}\left(\mathrm{2}{x}_{{A}} +\frac{{a}}{\mathrm{2}}\right)={b}^{\mathrm{2}} −{R}^{\mathrm{2}} \\ $$$$\sqrt{\mathrm{4}{R}^{\mathrm{2}} −{a}^{\mathrm{2}} }\left(\mathrm{4}{y}_{{A}} +\sqrt{\mathrm{4}{R}^{\mathrm{2}} −{a}^{\mathrm{2}} }\right)=\mathrm{2}{b}^{\mathrm{2}} +\mathrm{2}{c}^{\mathrm{2}} −{a}^{\mathrm{2}} −\mathrm{4}{R}^{\mathrm{2}} \\ $$$$\mathrm{2}{y}_{{A}} \sqrt{\mathrm{4}{R}^{\mathrm{2}} −{a}^{\mathrm{2}} }={b}^{\mathrm{2}} +{c}^{\mathrm{2}} −\mathrm{4}{R}^{\mathrm{2}} \\ $$$$\Rightarrow{y}_{{A}} =\frac{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} −\mathrm{4}{R}^{\mathrm{2}} }{\mathrm{2}\sqrt{\mathrm{4}{R}^{\mathrm{2}} −{a}^{\mathrm{2}} }} \\ $$$$\Rightarrow{z}_{{A}} =\sqrt{{R}^{\mathrm{2}} −{x}_{{A}} ^{\mathrm{2}} −{y}_{{A}} ^{\mathrm{2}} } \\ $$

Commented by ajfour last updated on 28/Dec/18

Beautiful expression! whats the  logic sir ?

$${Beautiful}\:{expression}!\:{whats}\:{the} \\ $$$${logic}\:{sir}\:? \\ $$

Commented by ajfour last updated on 28/Dec/18

Wonderfully  presented Sir. Thanks.  Easy one for you, i think.

$${Wonderfully}\:\:{presented}\:{Sir}.\:{Thanks}. \\ $$$${Easy}\:{one}\:{for}\:{you},\:{i}\:{think}. \\ $$

Commented by mr W last updated on 28/Dec/18

thank you sir!  a related question sir:  which relation must the sides a,b,c  have such that  the triangle can be placed into a  sphere with radius R?

$${thank}\:{you}\:{sir}! \\ $$$${a}\:{related}\:{question}\:{sir}: \\ $$$${which}\:{relation}\:{must}\:{the}\:{sides}\:{a},{b},{c} \\ $$$${have}\:{such}\:{that} \\ $$$${the}\:{triangle}\:{can}\:{be}\:{placed}\:{into}\:{a} \\ $$$${sphere}\:{with}\:{radius}\:{R}? \\ $$

Commented by mr W last updated on 28/Dec/18

i think the condition that the triangle  can be placed into the sphere is  ((abc)/(√((a+b+c)(−a+b+c)(a−b+c)(a+b−c))))≤R

$${i}\:{think}\:{the}\:{condition}\:{that}\:{the}\:{triangle} \\ $$$${can}\:{be}\:{placed}\:{into}\:{the}\:{sphere}\:{is} \\ $$$$\frac{{abc}}{\sqrt{\left({a}+{b}+{c}\right)\left(−{a}+{b}+{c}\right)\left({a}−{b}+{c}\right)\left({a}+{b}−{c}\right)}}\leqslant{R} \\ $$

Commented by mr W last updated on 28/Dec/18

the curcumcircle of the triangle must  fit into the sphere, i.e. the circumradius  of the triangle must be less than or  equal to the radius of the sphere.

$${the}\:{curcumcircle}\:{of}\:{the}\:{triangle}\:{must} \\ $$$${fit}\:{into}\:{the}\:{sphere},\:{i}.{e}.\:{the}\:{circumradius} \\ $$$${of}\:{the}\:{triangle}\:{must}\:{be}\:{less}\:{than}\:{or} \\ $$$${equal}\:{to}\:{the}\:{radius}\:{of}\:{the}\:{sphere}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com