Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 5157 by 1771727373 last updated on 24/Apr/16

1+2+3+4+........=S  2+4+6+8+10+........=2S  S⊃2S  1+3+5+7+............+(2S)=S  lim_(x→+∞) {((n(n−1))/2)}=+∞  lim_(x→+∞) {n^2 }=+∞  (+∞)+(+∞)=S=∞  ∴1+2+3+4+........=+∞

$$\mathrm{1}+\mathrm{2}+\mathrm{3}+\mathrm{4}+........={S} \\ $$$$\mathrm{2}+\mathrm{4}+\mathrm{6}+\mathrm{8}+\mathrm{10}+........=\mathrm{2}{S} \\ $$$${S}\supset\mathrm{2}{S} \\ $$$$\mathrm{1}+\mathrm{3}+\mathrm{5}+\mathrm{7}+............+\left(\mathrm{2}{S}\right)={S} \\ $$$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\left\{\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}}\right\}=+\infty \\ $$$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\left\{{n}^{\mathrm{2}} \right\}=+\infty \\ $$$$\left(+\infty\right)+\left(+\infty\right)={S}=\infty \\ $$$$\therefore\mathrm{1}+\mathrm{2}+\mathrm{3}+\mathrm{4}+........=+\infty \\ $$

Commented by FilupSmith last updated on 24/Apr/16

This is both correct and incorrect.    When looking at S, it does diverge. But  with analytical continuation, you can  show that S=−(1/(12))  This sequence is also known as ζ(−1).    I do not rememberthe proof, but I believe  Yozzii may be able to show you

$$\mathrm{This}\:\mathrm{is}\:\mathrm{both}\:\mathrm{correct}\:\mathrm{and}\:\mathrm{incorrect}. \\ $$$$ \\ $$$$\mathrm{When}\:\mathrm{looking}\:\mathrm{at}\:{S},\:\mathrm{it}\:\mathrm{does}\:\mathrm{diverge}.\:\mathrm{But} \\ $$$$\mathrm{with}\:\mathrm{analytical}\:\mathrm{continuation},\:\mathrm{you}\:\mathrm{can} \\ $$$$\mathrm{show}\:\mathrm{that}\:{S}=−\frac{\mathrm{1}}{\mathrm{12}} \\ $$$$\mathrm{This}\:\mathrm{sequence}\:\mathrm{is}\:\mathrm{also}\:\mathrm{known}\:\mathrm{as}\:\zeta\left(−\mathrm{1}\right). \\ $$$$ \\ $$$$\mathrm{I}\:\mathrm{do}\:\mathrm{not}\:\mathrm{rememberthe}\:\mathrm{proof},\:\mathrm{but}\:\mathrm{I}\:\mathrm{believe} \\ $$$$\mathrm{Yozzii}\:\mathrm{may}\:\mathrm{be}\:\mathrm{able}\:\mathrm{to}\:\mathrm{show}\:\mathrm{you} \\ $$

Commented by Yozzii last updated on 25/Apr/16

A test for divergence of a series given  by Σ_(i=1) ^∞ f(i) is lim_(n→∞) f(n)≠0.  In this question f(n)=n  ⇒lim_(n→∞) f(n)=lim_(n→∞) n=∞≠0.  ∴ 1+2+3+... is divergent.  Since also 1+2+3+...+n=((n(n+1))/2)  and ((n(n+1))/2) is an increasing function  for all n≥1, then lim_(n→∞) ((n(n+1))/2) does  not exist and is arbitrarily large  as n→∞.

$${A}\:{test}\:{for}\:{divergence}\:{of}\:{a}\:{series}\:{given} \\ $$$${by}\:\underset{{i}=\mathrm{1}} {\overset{\infty} {\sum}}{f}\left({i}\right)\:{is}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}{f}\left({n}\right)\neq\mathrm{0}. \\ $$$${In}\:{this}\:{question}\:{f}\left({n}\right)={n} \\ $$$$\Rightarrow\underset{{n}\rightarrow\infty} {\mathrm{lim}}{f}\left({n}\right)=\underset{{n}\rightarrow\infty} {\mathrm{lim}}{n}=\infty\neq\mathrm{0}. \\ $$$$\therefore\:\mathrm{1}+\mathrm{2}+\mathrm{3}+...\:{is}\:{divergent}. \\ $$$${Since}\:{also}\:\mathrm{1}+\mathrm{2}+\mathrm{3}+...+{n}=\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}} \\ $$$${and}\:\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}\:{is}\:{an}\:{increasing}\:{function} \\ $$$${for}\:{all}\:{n}\geqslant\mathrm{1},\:{then}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{{n}\left({n}+\mathrm{1}\right)}{\mathrm{2}}\:{does} \\ $$$${not}\:{exist}\:{and}\:{is}\:{arbitrarily}\:{large} \\ $$$${as}\:{n}\rightarrow\infty. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com