Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 51588 by peter frank last updated on 28/Dec/18

The tangent at P  to an ellipse  meets directrix at Q  prove that the line  joining the corresponding  focus to P and Q are  perpendicular

$${The}\:{tangent}\:{at}\:{P}\:\:{to}\:{an}\:{ellipse} \\ $$$${meets}\:{directrix}\:{at}\:{Q} \\ $$$${prove}\:{that}\:{the}\:{line} \\ $$$${joining}\:{the}\:{corresponding} \\ $$$${focus}\:{to}\:{P}\:{and}\:{Q}\:{are} \\ $$$${perpendicular} \\ $$

Answered by peter frank last updated on 28/Dec/18

from tangent  aysinθ+bxcos θ−ab=0...(i)  P=(acos θ,bsin θ)  Q=((a/e),y)⇒directrix  S=(ae,0)  aysinθ+bxcos θ−ab=0  put x=(a/e)     aysinθ+b×(a/e)cos θ−ab=0  y=((−b(cos θ−e))/(esin θ))  Q=((a/e),   ((−b(cos θ−e))/(esin θ)))  S=(ae,0)  slope⇒m_(SQ) =((−b(cos θ−e))/(asin θ(1−e^2 )))  P=(acos θ,bsin θ)  S=(ae,0)  slops⇒m_(SP) =((bsin θ)/(acos θ−ae))  SQ  and SP are perpendicula  slope_(SQ ) ×slope_(SP ) =−1  m_(SQ) =[((−b(cos θ−e))/(asin θ(1−e^2 )))  ]×[((bsin θ)/(acos θ−ae))]       =−(b^2 /(a^2 (1−e^2 )))  [b^(2 ) =a^2 (1−e^2 )       =−(b^2 /b^2 )=−1  hence shown

$${from}\:{tangent} \\ $$$${aysin}\theta+{bx}\mathrm{cos}\:\theta−{ab}=\mathrm{0}...\left({i}\right) \\ $$$${P}=\left({a}\mathrm{cos}\:\theta,{b}\mathrm{sin}\:\theta\right) \\ $$$${Q}=\left(\frac{{a}}{{e}},{y}\right)\Rightarrow{directrix} \\ $$$${S}=\left({ae},\mathrm{0}\right) \\ $$$${aysin}\theta+{bx}\mathrm{cos}\:\theta−{ab}=\mathrm{0} \\ $$$${put}\:{x}=\frac{{a}}{{e}}\:\:\: \\ $$$${aysin}\theta+{b}×\frac{{a}}{{e}}\mathrm{cos}\:\theta−{ab}=\mathrm{0} \\ $$$${y}=\frac{−{b}\left(\mathrm{cos}\:\theta−{e}\right)}{{e}\mathrm{sin}\:\theta} \\ $$$${Q}=\left(\frac{{a}}{{e}},\:\:\:\frac{−{b}\left(\mathrm{cos}\:\theta−{e}\right)}{{e}\mathrm{sin}\:\theta}\right) \\ $$$${S}=\left({ae},\mathrm{0}\right) \\ $$$${slope}\Rightarrow{m}_{{SQ}} =\frac{−{b}\left(\mathrm{cos}\:\theta−{e}\right)}{{a}\mathrm{sin}\:\theta\left(\mathrm{1}−{e}^{\mathrm{2}} \right)} \\ $$$${P}=\left({a}\mathrm{cos}\:\theta,{b}\mathrm{sin}\:\theta\right) \\ $$$${S}=\left({ae},\mathrm{0}\right) \\ $$$${slops}\Rightarrow{m}_{{SP}} =\frac{{b}\mathrm{sin}\:\theta}{{a}\mathrm{cos}\:\theta−{ae}} \\ $$$${SQ}\:\:{and}\:{SP}\:{are}\:{perpendicula} \\ $$$${slope}_{{SQ}\:} ×{slope}_{{SP}\:} =−\mathrm{1} \\ $$$${m}_{{SQ}} =\left[\frac{−{b}\left(\mathrm{cos}\:\theta−{e}\right)}{{a}\mathrm{sin}\:\theta\left(\mathrm{1}−{e}^{\mathrm{2}} \right)}\:\:\right]×\left[\frac{{b}\mathrm{sin}\:\theta}{{a}\mathrm{cos}\:\theta−{ae}}\right] \\ $$$$\:\:\:\:\:=−\frac{{b}^{\mathrm{2}} }{{a}^{\mathrm{2}} \left(\mathrm{1}−{e}^{\mathrm{2}} \right)}\:\:\left[{b}^{\mathrm{2}\:} ={a}^{\mathrm{2}} \left(\mathrm{1}−{e}^{\mathrm{2}} \right)\right. \\ $$$$\:\:\:\:\:=−\frac{{b}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=−\mathrm{1} \\ $$$${hence}\:{shown} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com