Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 51590 by peter frank last updated on 28/Dec/18

The line y=mx+c touches  ellipse (x^2 /a^2 )+(y^2 /b^2 )=1  prove that the foot of   perpendicular from  focus into this line lie on  auxillary circle   x^2 +y^2 =a^2

$${The}\:{line}\:{y}={mx}+{c}\:{touches} \\ $$$${ellipse}\:\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1} \\ $$$${prove}\:{that}\:{the}\:{foot}\:{of}\: \\ $$$${perpendicular}\:{from} \\ $$$${focus}\:{into}\:{this}\:{line}\:{lie}\:{on} \\ $$$${auxillary}\:{circle}\: \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={a}^{\mathrm{2}} \\ $$

Commented by Necxx last updated on 28/Dec/18

mr peter frank which country do  you hail from??

$${mr}\:{peter}\:{frank}\:{which}\:{country}\:{do} \\ $$$${you}\:{hail}\:{from}?? \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 28/Dec/18

c^2 =a^2 m^2 +b^2 ←  focus(c_1 ,0) and(−c_1 ,0)  c_1 ^2 =a^2 −b^2 ←  the eqn of st line passing through (c_1 ,0) and  ⊥ to y=mx+c is  y−0=((−1)/m)(x−c_1 )  y=((−x)/m)+(c_1 /m)  solve y=mx+c and y=((−x)/m)+(c_1 /m) to find foot of  perpendicular  y=mx+c  y=((−x)/m)+(c_1 /m)  mx+c=((−x)/m)+(c_1 /m)  x(m+(1/m))=(c_1 /m)−c  x=((c_1 −mc)/(m^2 +1))   so y=m(((c_1 −mc)/(m^2 +1)))+c  x=((c_1 −mc)/(m^2 +1))  y=((mc_1 −m^2 c+m^2 c+c)/(m^2 +1))  x^2 +y^2 =((c_1 ^2 −2mcc_1 +m^2 c^2 +m^2 c_1 ^2 +2mcc_1 +c^2 )/((m^2 +1)^2 ))  =((c_1 ^2 (m^2 +1)+c^2 (m^2 +1))/((m^2 +1)^2 ))  =(((m^2 +1))/((m^2 +1)^2 ))×(c^2 +c_1 ^2 )  =((a^2 m^2 +b^2 +a^2 −b^2 )/((m^2 +1)))  =a^2

$${c}^{\mathrm{2}} ={a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} \leftarrow \\ $$$${focus}\left({c}_{\mathrm{1}} ,\mathrm{0}\right)\:{and}\left(−{c}_{\mathrm{1}} ,\mathrm{0}\right) \\ $$$${c}_{\mathrm{1}} ^{\mathrm{2}} ={a}^{\mathrm{2}} −{b}^{\mathrm{2}} \leftarrow \\ $$$${the}\:{eqn}\:{of}\:{st}\:{line}\:{passing}\:{through}\:\left({c}_{\mathrm{1}} ,\mathrm{0}\right)\:{and} \\ $$$$\bot\:{to}\:{y}={mx}+{c}\:{is} \\ $$$${y}−\mathrm{0}=\frac{−\mathrm{1}}{{m}}\left({x}−{c}_{\mathrm{1}} \right) \\ $$$${y}=\frac{−{x}}{{m}}+\frac{{c}_{\mathrm{1}} }{{m}} \\ $$$${solve}\:{y}={mx}+{c}\:{and}\:{y}=\frac{−{x}}{{m}}+\frac{{c}_{\mathrm{1}} }{{m}}\:{to}\:{find}\:{foot}\:{of} \\ $$$${perpendicular} \\ $$$${y}={mx}+{c} \\ $$$${y}=\frac{−{x}}{{m}}+\frac{{c}_{\mathrm{1}} }{{m}} \\ $$$${mx}+{c}=\frac{−{x}}{{m}}+\frac{{c}_{\mathrm{1}} }{{m}} \\ $$$${x}\left({m}+\frac{\mathrm{1}}{{m}}\right)=\frac{{c}_{\mathrm{1}} }{{m}}−{c} \\ $$$${x}=\frac{{c}_{\mathrm{1}} −{mc}}{{m}^{\mathrm{2}} +\mathrm{1}}\:\:\:{so}\:{y}={m}\left(\frac{{c}_{\mathrm{1}} −{mc}}{{m}^{\mathrm{2}} +\mathrm{1}}\right)+{c} \\ $$$${x}=\frac{{c}_{\mathrm{1}} −{mc}}{{m}^{\mathrm{2}} +\mathrm{1}}\:\:{y}=\frac{{mc}_{\mathrm{1}} −{m}^{\mathrm{2}} {c}+{m}^{\mathrm{2}} {c}+{c}}{{m}^{\mathrm{2}} +\mathrm{1}} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\frac{{c}_{\mathrm{1}} ^{\mathrm{2}} −\mathrm{2}{mcc}_{\mathrm{1}} +{m}^{\mathrm{2}} {c}^{\mathrm{2}} +{m}^{\mathrm{2}} {c}_{\mathrm{1}} ^{\mathrm{2}} +\mathrm{2}{mcc}_{\mathrm{1}} +{c}^{\mathrm{2}} }{\left({m}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=\frac{{c}_{\mathrm{1}} ^{\mathrm{2}} \left({m}^{\mathrm{2}} +\mathrm{1}\right)+{c}^{\mathrm{2}} \left({m}^{\mathrm{2}} +\mathrm{1}\right)}{\left({m}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=\frac{\left({m}^{\mathrm{2}} +\mathrm{1}\right)}{\left({m}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }×\left({c}^{\mathrm{2}} +{c}_{\mathrm{1}} ^{\mathrm{2}} \right) \\ $$$$=\frac{{a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} +{a}^{\mathrm{2}} −{b}^{\mathrm{2}} }{\left({m}^{\mathrm{2}} +\mathrm{1}\right)} \\ $$$$={a}^{\mathrm{2}} \\ $$$$ \\ $$$$\:\:\: \\ $$

Commented by peter frank last updated on 28/Dec/18

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Answered by peter frank last updated on 28/Dec/18

y=mx+c  P=(x,y)  S=(ae,0)  equation =?  slope of normal   M  slope of tangent −  (1/m)  −(1/m)=(y/(x−ae))  ae=my+x  a^2 e^2 =m^2 y^2 +2mxy+x^2 ...(i)  recall  y=mx+(√(a^2 m^2 +b^2 ))  y−mx=(√(a^2 m^2 +b^2 ))  y^2 −2mxy+m^2 x^2 =a^2 m^2 +b^2 ....(ii)  add (i)+(ii)  a^2 e^2 =m^2 y^2 +2mxy+x^2 =  y^2 −2mxy+m^2 x^2 =a^2 m^2 +b^2   x^2 +y^2 =a^2

$${y}={mx}+{c} \\ $$$${P}=\left({x},{y}\right) \\ $$$${S}=\left({ae},\mathrm{0}\right) \\ $$$${equation}\:=? \\ $$$${slope}\:{of}\:{normal}\:\:\:{M} \\ $$$${slope}\:{of}\:{tangent}\:−\:\:\frac{\mathrm{1}}{{m}} \\ $$$$−\frac{\mathrm{1}}{{m}}=\frac{{y}}{{x}−{ae}} \\ $$$${ae}={my}+{x} \\ $$$${a}^{\mathrm{2}} {e}^{\mathrm{2}} ={m}^{\mathrm{2}} {y}^{\mathrm{2}} +\mathrm{2}{mxy}+{x}^{\mathrm{2}} ...\left({i}\right) \\ $$$${recall} \\ $$$${y}={mx}+\sqrt{{a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$${y}−{mx}=\sqrt{{a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} } \\ $$$${y}^{\mathrm{2}} −\mathrm{2}{mxy}+{m}^{\mathrm{2}} {x}^{\mathrm{2}} ={a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} ....\left({ii}\right) \\ $$$${add}\:\left({i}\right)+\left({ii}\right) \\ $$$${a}^{\mathrm{2}} {e}^{\mathrm{2}} ={m}^{\mathrm{2}} {y}^{\mathrm{2}} +\mathrm{2}{mxy}+{x}^{\mathrm{2}} = \\ $$$${y}^{\mathrm{2}} −\mathrm{2}{mxy}+{m}^{\mathrm{2}} {x}^{\mathrm{2}} ={a}^{\mathrm{2}} {m}^{\mathrm{2}} +{b}^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} ={a}^{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com