All Questions Topic List
Coordinate Geometry Questions
Previous in All Question Next in All Question
Previous in Coordinate Geometry Next in Coordinate Geometry
Question Number 51613 by peter frank last updated on 29/Dec/18
Provethattheperpendicilartangenttotheellipsex2a2+y2b2=1meetsonthecirclex2+y2=a2+b2.
Answered by peter frank last updated on 29/Dec/18
y=mx+a2m2+b2y−mx=a2m2+b2(y−mx)2=(a2m2+b2)2m2(x2−a2)−2mxy+y2−b2=0m1+m2=2mxx2−a2m1m2=y2−b2x2−a2forperpendicularm1m2=−1−1=y2−b2x2−a2y2+x2=a2+b2
Answered by mr W last updated on 29/Dec/18
twoperpendicularlinesfrompoint(h,k):y−kx−h=m⇒mx−y−mh+k=0y−kx−h=−1m⇒x+my−h+mk=0sincetheytangenttheellipse,a2m2+b2(−1)2−(−mh+k)2=0⇒a2m2+b2=m2h2+k2−2mhk...(i)a2(1)2+b2m2−(−h+mk)2=0⇒a2+b2m2=h2+m2k2−2mhk...(ii)(i)+(ii):⇒a2(m2+1)+b2(1+m2)=h2(m2+1)+k2(1+m2)⇒a2+b2=h2+k2or⇒x2+y2=a2+b2
Commented by peter frank last updated on 29/Dec/18
thankyou
Terms of Service
Privacy Policy
Contact: info@tinkutara.com