Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 51700 by mr W last updated on 29/Dec/18

Commented by mr W last updated on 29/Dec/18

A rope with uniform mass is fixed  at one end on point A. At point B the  rope is laid over a pulley. All contact  is frictionless and the size of pulley  is negligible.  Find the minimum length of the rope  such that the rope remains in  equilibrium as shown in the picture.

AropewithuniformmassisfixedatoneendonpointA.AtpointBtheropeislaidoverapulley.Allcontactisfrictionlessandthesizeofpulleyisnegligible.Findtheminimumlengthoftheropesuchthattheroperemainsinequilibriumasshowninthepicture.

Answered by mr W last updated on 30/Dec/18

Commented by mr W last updated on 30/Dec/18

rope length AB=l  rope length BC=h  total rope length=L=l+h  tension in rope at B=T  T=hρg  T_0 =T cos θ  a=(T_0 /(ρg))=h cos θ  ⇒h=(a/(cos θ))  y=a cosh (x/a)  y′=sinh (x/a)  s=a sinh (x/a)  at B:  y′=sinh (b/(2a))=tan θ  ⇒a=(b/(2 sinh^(−1)  (tan θ)))  (l/2)=a sinh (b/(2a))=a tan θ  ⇒l=2a tan θ  ⇒L=l+h=2a tan θ+(a/(cos θ))=a(2 tan θ+(1/(cos θ)))  ⇒L=(b/(2 sinh^(−1)  (tan θ)))(2 tan θ+(√(1+tan^2  θ)))  let t=tan θ  ⇒(L/b)=f(t)=((2t+(√(1+t^2 )))/(2 sinh^(−1)  t))=((2t+(√(1+t^2 )))/(2ln (t+(√(1+t^2 )))))  f′(t)=0⇒t=1.0186⇒θ=45.528°  (L_(min) /b)=min.f(t)≈1.9367  ⇒L_(min) ≈1.9367 b

ropelengthAB=lropelengthBC=htotalropelength=L=l+htensioninropeatB=TT=hρgT0=Tcosθa=T0ρg=hcosθh=acosθy=acoshxay=sinhxas=asinhxaatB:y=sinhb2a=tanθa=b2sinh1(tanθ)l2=asinhb2a=atanθl=2atanθL=l+h=2atanθ+acosθ=a(2tanθ+1cosθ)L=b2sinh1(tanθ)(2tanθ+1+tan2θ)lett=tanθLb=f(t)=2t+1+t22sinh1t=2t+1+t22ln(t+1+t2)f(t)=0t=1.0186θ=45.528°Lminb=min.f(t)1.9367Lmin1.9367b

Commented by ajfour last updated on 30/Dec/18

super thanks for the hyperbolic way Sir!

superthanksforthehyperbolicwaySir!

Commented by ajfour last updated on 30/Dec/18

Tcos θ=T_0 =T_B cos α  ⇒ dTcos θ = Tsin θdθ  ⇒ dT = ((Tsin θdθ)/(cos θ))    ...(i)  Also       (T+dT)sin (θ+dθ)−Tsin θ=ρgdl  ⇒ dTsin θ+Tcos θdθ = ρgdl  using (i):        ((Tsin^2 θdθ)/(cos θ))+Tcos θdθ = ρgdl  ⇒  Tdθ = ρgcos θdl = ρgdx   ...(ii)     and   T_B sin α = ρg((l/2))   ...(iii)  ⇒  ((Tcos θdθ)/(cos θ)) = ρgdx  or      (((T_B cos α)sin α)/(cos θ.sin α))dθ = ρgdx  using (iii)         ((ρg((l/2))cos α)/(cos θ.sin α))dθ = ρgdx      (l/2)((cos α)/(sin α))∫_0 ^(  θ) sec θ = x  ⇒  ln(sec θ+tan θ)= ((2xtan α)/l)      (√(1+((dy/dx))^2 ))+(dy/dx) = e^((2xtan α)/l)   squaring        1= e^((4xtan α)/l) −2((dy/dx))e^((2xtan α)/l)   ⇒  (dy/dx) = (1/2)(e^((2xtan α)/l) −e^(−((2xtan α)/l)) )  and this at B (x=(b/2)), gives            2tan α = e^((btan α)/l) −e^(−((btan α)/l))                             2m= t−(1/t)         (say)  ⇒    t^2 −2mt −1 = 0  or     (t−m)^2 = 1+m^2      t = e^((bm)/l)  = m+(√(1+m^2 ))  ⇒  ((btan α)/l) = ln( tan α+sec α)   ...(I)     further   T_B  = 𝛒gz = ((𝛒gl)/(2sin 𝛂))     or     z = (l/(2sin α))  (z being the vertically hanging length)      L = l+z = l(1+(1/(2sin α)))  and from (I) (4 lines above)     L = ((btan α)/(ln(tan α+sec α)))(((2sin α+1)/(2sin α)))       L = ((b(2sin α+1))/(2cos α ln(tan α+sec α)))  ...(A)  ⇒ (b/(2L)) = ((cos α ln(tan α+sec α))/((2sin α+1)))   (d/dα)((b/(2L))) = 0   ⇒     ((cos α)/((2sin α+1)))×sec α      +(((2sin α+1)(−sin α)−2cos^2 α)/((2sin α+1)^2 )) ln(tan α+sec α)= 0  ___________________________  ⇒ ln(sec α+tan α)= ((2sin α+1)/(2+sin α))  ..(B)     ⇒ { α = 45.5274°   }  ___________________________  utilizing this in (A)     L = ((b(2sin α+1))/(2cos α))×(((2+sin α))/((2sin α+1)))  ⇒  L = ((b(2+sin α))/(2cos α)) = 1.9367b .

Tcosθ=T0=TBcosαdTcosθ=TsinθdθdT=Tsinθdθcosθ...(i)Also(T+dT)sin(θ+dθ)Tsinθ=ρgdldTsinθ+Tcosθdθ=ρgdlusing(i):Tsin2θdθcosθ+Tcosθdθ=ρgdlTdθ=ρgcosθdl=ρgdx...(ii)andTBsinα=ρg(l2)...(iii)Tcosθdθcosθ=ρgdxor(TBcosα)sinαcosθ.sinαdθ=ρgdxusing(iii)ρg(l2)cosαcosθ.sinαdθ=ρgdxl2cosαsinα0θsecθ=xln(secθ+tanθ)=2xtanαl1+(dydx)2+dydx=e2xtanαlsquaring1=e4xtanαl2(dydx)e2xtanαldydx=12(e2xtanαle2xtanαl)andthisatB(x=b2),gives2tanα=ebtanαlebtanαl2m=t1t(say)t22mt1=0or(tm)2=1+m2t=ebml=m+1+m2btanαl=ln(tanα+secα)...(I)furtherTB=ρgz=ρgl2sinαorz=l2sinα(zbeingtheverticallyhanginglength)L=l+z=l(1+12sinα)andfrom(I)(4linesabove)L=btanαln(tanα+secα)(2sinα+12sinα)L=b(2sinα+1)2cosαln(tanα+secα)...(A)b2L=cosαln(tanα+secα)(2sinα+1)ddα(b2L)=0cosα(2sinα+1)×secα+(2sinα+1)(sinα)2cos2α(2sinα+1)2ln(tanα+secα)=0___________________________ln(secα+tanα)=2sinα+12+sinα..(B){α=45.5274°}___________________________utilizingthisin(A)L=b(2sinα+1)2cosα×(2+sinα)(2sinα+1)L=b(2+sinα)2cosα=1.9367b.

Commented by mr W last updated on 30/Dec/18

it′s a marvelous job to derive the eqn.  from scratch! thanks alot sir!

itsamarvelousjobtoderivetheeqn.fromscratch!thanksalotsir!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com