Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 51774 by ajfour last updated on 30/Dec/18

Commented by ajfour last updated on 30/Dec/18

Find maximum area A in light blue.  (source : ajfour)

$${Find}\:{maximum}\:{area}\:{A}\:{in}\:{light}\:{blue}. \\ $$$$\left({source}\::\:{ajfour}\right) \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 30/Dec/18

Commented by tanmay.chaudhury50@gmail.com last updated on 30/Dec/18

area of OABCDA is=2[(1/2)×h×b+(1/2)×k×a]  =hb+ka  area if pinnk circle sector=(b^2 /2)×(π−2α)  area of yelolow circle sector=(a^2 /2)×(π−2β)  2α+2β=(π/2)     α+β=(π/4)  area of light blue area  hb+ka−[(π/2)(a^2 +b^2 )−(a^2 β+b^2 α)]  to my view...tangent from point o to circle  radius b...tangent from o to circle radis a   should be equal ldngth...  so h=k  tanα=(b/h)    α=tan^(−1) ((b/h))  tanβ=(a/k)=(a/h)   β=tan^(−1) ((a/h))  tan(α+β)=((tanα+tanβ)/(1−tanαtanβ))=(((b/h)+(a/h))/(1−((ab)/h^2 )))=(((a+b)/h)/(1−((ab)/h^2 )))=1  ((a+b)/h)=1−((ab)/h^2 )  (a+b)h=h^2 −ab  h^2 −h(a+b)−ab=0  h=(((a+b)±(√((a+b)^2 +4ab)))/2)  h=(((a+b)+(√((a+b)^2 +4ab)))/2)=L(say)  so light blue area  hb+ka−[(π/2)(a^2 +b^2 )−(a^2 β+b^2 α)]  =L(a+b)−[(π/2)(a^2 +b^2 )−{a^2 tan^(−1) ((a/L))+b^2 tan^(−1) ((b/L))]  where L=f(a,b)  pls chek upto this step...

$${area}\:{of}\:{OABCDA}\:{is}=\mathrm{2}\left[\frac{\mathrm{1}}{\mathrm{2}}×{h}×{b}+\frac{\mathrm{1}}{\mathrm{2}}×{k}×{a}\right] \\ $$$$={hb}+{ka} \\ $$$${area}\:{if}\:{pinnk}\:{circle}\:{sector}=\frac{{b}^{\mathrm{2}} }{\mathrm{2}}×\left(\pi−\mathrm{2}\alpha\right) \\ $$$${area}\:{of}\:{yelolow}\:{circle}\:{sector}=\frac{{a}^{\mathrm{2}} }{\mathrm{2}}×\left(\pi−\mathrm{2}\beta\right) \\ $$$$\mathrm{2}\alpha+\mathrm{2}\beta=\frac{\pi}{\mathrm{2}}\:\:\:\:\:\alpha+\beta=\frac{\pi}{\mathrm{4}} \\ $$$${area}\:{of}\:{light}\:{blue}\:{area} \\ $$$${hb}+{ka}−\left[\frac{\pi}{\mathrm{2}}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)−\left({a}^{\mathrm{2}} \beta+{b}^{\mathrm{2}} \alpha\right)\right] \\ $$$${to}\:{my}\:{view}...{tangent}\:{from}\:{point}\:{o}\:{to}\:{circle} \\ $$$${radius}\:{b}...{tangent}\:{from}\:{o}\:{to}\:{circle}\:{radis}\:{a} \\ $$$$\:{should}\:{be}\:{equal}\:{ldngth}... \\ $$$${so}\:{h}={k} \\ $$$${tan}\alpha=\frac{{b}}{{h}}\:\:\:\:\alpha={tan}^{−\mathrm{1}} \left(\frac{{b}}{{h}}\right) \\ $$$${tan}\beta=\frac{{a}}{{k}}=\frac{{a}}{{h}}\:\:\:\beta={tan}^{−\mathrm{1}} \left(\frac{{a}}{{h}}\right) \\ $$$${tan}\left(\alpha+\beta\right)=\frac{{tan}\alpha+{tan}\beta}{\mathrm{1}−{tan}\alpha{tan}\beta}=\frac{\frac{{b}}{{h}}+\frac{{a}}{{h}}}{\mathrm{1}−\frac{{ab}}{{h}^{\mathrm{2}} }}=\frac{\frac{{a}+{b}}{{h}}}{\mathrm{1}−\frac{{ab}}{{h}^{\mathrm{2}} }}=\mathrm{1} \\ $$$$\frac{{a}+{b}}{{h}}=\mathrm{1}−\frac{{ab}}{{h}^{\mathrm{2}} } \\ $$$$\left({a}+{b}\right){h}={h}^{\mathrm{2}} −{ab} \\ $$$${h}^{\mathrm{2}} −{h}\left({a}+{b}\right)−{ab}=\mathrm{0} \\ $$$${h}=\frac{\left({a}+{b}\right)\pm\sqrt{\left({a}+{b}\right)^{\mathrm{2}} +\mathrm{4}{ab}}}{\mathrm{2}} \\ $$$${h}=\frac{\left({a}+{b}\right)+\sqrt{\left({a}+{b}\right)^{\mathrm{2}} +\mathrm{4}{ab}}}{\mathrm{2}}={L}\left({say}\right) \\ $$$${so}\:{light}\:{blue}\:{area} \\ $$$${hb}+{ka}−\left[\frac{\pi}{\mathrm{2}}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)−\left({a}^{\mathrm{2}} \beta+{b}^{\mathrm{2}} \alpha\right)\right] \\ $$$$={L}\left({a}+{b}\right)−\left[\frac{\pi}{\mathrm{2}}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)−\left\{{a}^{\mathrm{2}} {tan}^{−\mathrm{1}} \left(\frac{{a}}{{L}}\right)+{b}^{\mathrm{2}} {tan}^{−\mathrm{1}} \left(\frac{{b}}{{L}}\right)\right]\right. \\ $$$${where}\:{L}={f}\left({a},{b}\right) \\ $$$${pls}\:{chek}\:{upto}\:{this}\:{step}... \\ $$$$ \\ $$

Commented by ajfour last updated on 30/Dec/18

tough to check Sir, i have myself  tried along mrW Sir′s line..!

$${tough}\:{to}\:{check}\:{Sir},\:{i}\:{have}\:{myself} \\ $$$${tried}\:{along}\:{mrW}\:{Sir}'{s}\:{line}..! \\ $$

Answered by mr W last updated on 30/Dec/18

Commented by mr W last updated on 30/Dec/18

A_(blue) =[a+(a+b)cos α][b+(a+b)sin α]−(((a+b)^2 sin α cos α)/2)+((αa^2 )/2)+((((π/2)−α)b^2 )/2)−((πa^2 )/2)−((πb^2 )/2)  A_(blue) =(a+b)[(a sin α+b cos α)+(((a+b)sin 2α)/4)+((α(a−b))/2)]+ab−((πa^2 )/2)−((πb^2 )/4)   ...(ii)  (dA_(blue) /dα)=0  ⇒a cos α−b sin α+(((a+b)cos 2α)/2)+((a−b)/2)=0  ⇒2(a cos α−b sin α)+(a+b)cos 2α=b−a  let (b/a)=μ, t=tan (α/2)  ⇒cos α(1+cos  α)=μ sin α(1+sin α)  ⇒μ=((cos α(1+cos  α))/(sin α(1+sin α)))=((1−t)/(t(1+t)))  μt^2 +(μ+1)t−1=0  t=tan (α/2)=(((√(μ^2 +6μ+1))−μ−1)/(2μ))  ⇒α=2 tan^(−1) (((√(μ^2 +6μ+1))−μ−1)/(2μ))  ⇒max. A_(blue)  from (ii)

$${A}_{{blue}} =\left[{a}+\left({a}+{b}\right)\mathrm{cos}\:\alpha\right]\left[{b}+\left({a}+{b}\right)\mathrm{sin}\:\alpha\right]−\frac{\left({a}+{b}\right)^{\mathrm{2}} \mathrm{sin}\:\alpha\:\mathrm{cos}\:\alpha}{\mathrm{2}}+\frac{\alpha{a}^{\mathrm{2}} }{\mathrm{2}}+\frac{\left(\frac{\pi}{\mathrm{2}}−\alpha\right){b}^{\mathrm{2}} }{\mathrm{2}}−\frac{\pi{a}^{\mathrm{2}} }{\mathrm{2}}−\frac{\pi{b}^{\mathrm{2}} }{\mathrm{2}} \\ $$$${A}_{{blue}} =\left({a}+{b}\right)\left[\left({a}\:\mathrm{sin}\:\alpha+{b}\:\mathrm{cos}\:\alpha\right)+\frac{\left({a}+{b}\right)\mathrm{sin}\:\mathrm{2}\alpha}{\mathrm{4}}+\frac{\alpha\left({a}−{b}\right)}{\mathrm{2}}\right]+{ab}−\frac{\pi{a}^{\mathrm{2}} }{\mathrm{2}}−\frac{\pi{b}^{\mathrm{2}} }{\mathrm{4}}\:\:\:...\left({ii}\right) \\ $$$$\frac{{dA}_{{blue}} }{{d}\alpha}=\mathrm{0} \\ $$$$\Rightarrow{a}\:\mathrm{cos}\:\alpha−{b}\:\mathrm{sin}\:\alpha+\frac{\left({a}+{b}\right)\mathrm{cos}\:\mathrm{2}\alpha}{\mathrm{2}}+\frac{{a}−{b}}{\mathrm{2}}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{2}\left({a}\:\mathrm{cos}\:\alpha−{b}\:\mathrm{sin}\:\alpha\right)+\left({a}+{b}\right)\mathrm{cos}\:\mathrm{2}\alpha={b}−{a} \\ $$$${let}\:\frac{{b}}{{a}}=\mu,\:{t}=\mathrm{tan}\:\frac{\alpha}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{cos}\:\alpha\left(\mathrm{1}+\mathrm{cos}\:\:\alpha\right)=\mu\:\mathrm{sin}\:\alpha\left(\mathrm{1}+\mathrm{sin}\:\alpha\right) \\ $$$$\Rightarrow\mu=\frac{\mathrm{cos}\:\alpha\left(\mathrm{1}+\mathrm{cos}\:\:\alpha\right)}{\mathrm{sin}\:\alpha\left(\mathrm{1}+\mathrm{sin}\:\alpha\right)}=\frac{\mathrm{1}−{t}}{{t}\left(\mathrm{1}+{t}\right)} \\ $$$$\mu{t}^{\mathrm{2}} +\left(\mu+\mathrm{1}\right){t}−\mathrm{1}=\mathrm{0} \\ $$$${t}=\mathrm{tan}\:\frac{\alpha}{\mathrm{2}}=\frac{\sqrt{\mu^{\mathrm{2}} +\mathrm{6}\mu+\mathrm{1}}−\mu−\mathrm{1}}{\mathrm{2}\mu} \\ $$$$\Rightarrow\alpha=\mathrm{2}\:\mathrm{tan}^{−\mathrm{1}} \frac{\sqrt{\mu^{\mathrm{2}} +\mathrm{6}\mu+\mathrm{1}}−\mu−\mathrm{1}}{\mathrm{2}\mu} \\ $$$$\Rightarrow{max}.\:{A}_{{blue}} \:{from}\:\left({ii}\right) \\ $$

Commented by ajfour last updated on 30/Dec/18

let  tan (α/2) = t  ⇒  μ= (((1−t^2 ))/(t(1+t)^2 )) ⇒    𝛍 = ((1−t)/(t(1+t)))   μt^2 +(μ+1)t−1=0  t = ((−(μ+1)+(√((μ+1)^2 +4μ)))/(2μ))   α = 2tan^(−1) (((−(μ+1)+(√((μ+1)^2 +4μ)))/(2μ)))

$${let}\:\:\mathrm{tan}\:\frac{\alpha}{\mathrm{2}}\:=\:{t} \\ $$$$\Rightarrow\:\:\mu=\:\frac{\left(\mathrm{1}−{t}^{\mathrm{2}} \right)}{{t}\left(\mathrm{1}+{t}\right)^{\mathrm{2}} }\:\Rightarrow\:\:\:\:\boldsymbol{\mu}\:=\:\frac{\mathrm{1}−\boldsymbol{{t}}}{\boldsymbol{{t}}\left(\mathrm{1}+\boldsymbol{{t}}\right)}\: \\ $$$$\mu{t}^{\mathrm{2}} +\left(\mu+\mathrm{1}\right){t}−\mathrm{1}=\mathrm{0} \\ $$$${t}\:=\:\frac{−\left(\mu+\mathrm{1}\right)+\sqrt{\left(\mu+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{4}\mu}}{\mathrm{2}\mu} \\ $$$$\:\alpha\:=\:\mathrm{2tan}^{−\mathrm{1}} \left(\frac{−\left(\mu+\mathrm{1}\right)+\sqrt{\left(\mu+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{4}\mu}}{\mathrm{2}\mu}\right) \\ $$

Commented by ajfour last updated on 30/Dec/18

Yes Sir, (sorry), its Absolutely right!

$${Yes}\:{Sir},\:\left({sorry}\right),\:{its}\:\mathcal{A}{bsolutely}\:{right}! \\ $$

Commented by mr W last updated on 30/Dec/18

thank you sir! that′s correct.

$${thank}\:{you}\:{sir}!\:{that}'{s}\:{correct}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com