Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 51822 by peter frank last updated on 30/Dec/18

If  p and q  are the length  of perpendicular from  the origin to the lines  xcos θ−ysin  θ=kcos2θ  and xsec θ+ycosec θ=k  respectively  prove that  p^2 +4q^2 =k^2

Ifpandqarethelengthofperpendicularfromtheorigintothelinesxcosθysinθ=kcos2θandxsecθ+ycosecθ=krespectivelyprovethatp2+4q2=k2

Answered by tanmay.chaudhury50@gmail.com last updated on 30/Dec/18

p=∣((0+0−k)/(√(cos^2 θ+sin^2 θ)))∣=k  q=∣((−k)/(√(sec^2 θ+cosec^2 θ)))∣=(k/(√((1/(cos^2 θ))+(1/(sin^2 θ)))))=ksinθcosθ  pls check the question...

p=∣0+0kcos2θ+sin2θ∣=kq=∣ksec2θ+cosec2θ∣=k1cos2θ+1sin2θ=ksinθcosθplscheckthequestion...

Commented by peter frank last updated on 30/Dec/18

now fixed

nowfixed

Commented by peter frank last updated on 30/Dec/18

p^2 =k^2 cos^2  2θ....(i)  q^2 =(1/4)k^2 sin^2 2θ....(ii)  (i)+(ii)  p^2 +4q^2 =k^2   thank you sir for your method .....finaly i reach  destination

p2=k2cos22θ....(i)q2=14k2sin22θ....(ii)(i)+(ii)p2+4q2=k2thankyousirforyourmethod.....finalyireachdestination

Terms of Service

Privacy Policy

Contact: info@tinkutara.com