Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 51825 by Abdo msup. last updated on 30/Dec/18

find f(α)=∫_0 ^1 ln(1+e^(−α) x)dx  with α≥0

$${find}\:{f}\left(\alpha\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+{e}^{−\alpha} {x}\right){dx}\:\:{with}\:\alpha\geqslant\mathrm{0} \\ $$

Commented by maxmathsup by imad last updated on 31/Dec/18

let put e^(−α)  =λ ⇒f(α)=∫_0 ^1 ln(1+λx)dx and by parts u^′ =1 ,v=ln(1+λx)  we get f(α) =[xln(1+λx)]_0 ^1  −∫_0 ^1  x (λ/(1+λx))dx  =ln(1+λ)−∫_0 ^1  ((λx+1−1)/(1+λx))dx =ln(1+λ)−1 +∫_0 ^1   (dx/(1+λx))  =ln(1+λ)−1 +(1/λ)ln∣1+λx∣ +c ⇒  f(α)=ln(1+e^(−α) )−1 +e^(−α) ln∣1+e^(−α) x∣ +c .

$${let}\:{put}\:{e}^{−\alpha} \:=\lambda\:\Rightarrow{f}\left(\alpha\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {ln}\left(\mathrm{1}+\lambda{x}\right){dx}\:{and}\:{by}\:{parts}\:{u}^{'} =\mathrm{1}\:,{v}={ln}\left(\mathrm{1}+\lambda{x}\right) \\ $$$${we}\:{get}\:{f}\left(\alpha\right)\:=\left[{xln}\left(\mathrm{1}+\lambda{x}\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \:−\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}\:\frac{\lambda}{\mathrm{1}+\lambda{x}}{dx} \\ $$$$={ln}\left(\mathrm{1}+\lambda\right)−\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{\lambda{x}+\mathrm{1}−\mathrm{1}}{\mathrm{1}+\lambda{x}}{dx}\:={ln}\left(\mathrm{1}+\lambda\right)−\mathrm{1}\:+\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\frac{{dx}}{\mathrm{1}+\lambda{x}} \\ $$$$={ln}\left(\mathrm{1}+\lambda\right)−\mathrm{1}\:+\frac{\mathrm{1}}{\lambda}{ln}\mid\mathrm{1}+\lambda{x}\mid\:+{c}\:\Rightarrow \\ $$$${f}\left(\alpha\right)={ln}\left(\mathrm{1}+{e}^{−\alpha} \right)−\mathrm{1}\:+{e}^{−\alpha} {ln}\mid\mathrm{1}+{e}^{−\alpha} {x}\mid\:+{c}\:. \\ $$

Commented by maxmathsup by imad last updated on 31/Dec/18

f(α)=ln(1+e^(−α) )−1 +e^α ln∣1+e^(−α) x∣ +c .

$${f}\left(\alpha\right)={ln}\left(\mathrm{1}+{e}^{−\alpha} \right)−\mathrm{1}\:+{e}^{\alpha} {ln}\mid\mathrm{1}+{e}^{−\alpha} {x}\mid\:+{c}\:. \\ $$

Commented by Abdo msup. last updated on 31/Dec/18

f(α)=ln(1+λ)−1+[(1/λ)ln∣1+λx∣]_0 ^1  +c  =ln(1+λ)−1 +(1/λ)ln(1+λ)+c  ⇒f(α)=ln(1+e^(−α) )−1+e^α ln(1+e^(−α) )+c  =(1+e^α )ln(1+e^(−α) )−1+c  .

$${f}\left(\alpha\right)={ln}\left(\mathrm{1}+\lambda\right)−\mathrm{1}+\left[\frac{\mathrm{1}}{\lambda}{ln}\mid\mathrm{1}+\lambda{x}\mid\right]_{\mathrm{0}} ^{\mathrm{1}} \:+{c} \\ $$$$={ln}\left(\mathrm{1}+\lambda\right)−\mathrm{1}\:+\frac{\mathrm{1}}{\lambda}{ln}\left(\mathrm{1}+\lambda\right)+{c} \\ $$$$\Rightarrow{f}\left(\alpha\right)={ln}\left(\mathrm{1}+{e}^{−\alpha} \right)−\mathrm{1}+{e}^{\alpha} {ln}\left(\mathrm{1}+{e}^{−\alpha} \right)+{c} \\ $$$$=\left(\mathrm{1}+{e}^{\alpha} \right){ln}\left(\mathrm{1}+{e}^{−\alpha} \right)−\mathrm{1}+{c}\:\:. \\ $$

Answered by Smail last updated on 30/Dec/18

let  t=1+e^(−α) x⇒dx=e^α dt  f(α)=e^α ∫_1 ^(1+e^(−α) ) ln(t)dt  by parts  u=ln(t)⇒u′=(1/t)  v′=1⇒v=t  f(α)=e^α [tlnt]_1 ^(1+e^(−α) ) −e^α ∫_1 ^(1+e^(−α) ) dt  =e^α ((1+e^(−α) )ln(1+e^(−α) )−e^(−α) )  f(α)=(e^α +1)(ln(e^α +1)−α)−1

$${let}\:\:{t}=\mathrm{1}+{e}^{−\alpha} {x}\Rightarrow{dx}={e}^{\alpha} {dt} \\ $$$${f}\left(\alpha\right)={e}^{\alpha} \int_{\mathrm{1}} ^{\mathrm{1}+{e}^{−\alpha} } {ln}\left({t}\right){dt} \\ $$$${by}\:{parts} \\ $$$${u}={ln}\left({t}\right)\Rightarrow{u}'=\frac{\mathrm{1}}{{t}} \\ $$$${v}'=\mathrm{1}\Rightarrow{v}={t} \\ $$$${f}\left(\alpha\right)={e}^{\alpha} \left[{tlnt}\right]_{\mathrm{1}} ^{\mathrm{1}+{e}^{−\alpha} } −{e}^{\alpha} \int_{\mathrm{1}} ^{\mathrm{1}+{e}^{−\alpha} } {dt} \\ $$$$={e}^{\alpha} \left(\left(\mathrm{1}+{e}^{−\alpha} \right){ln}\left(\mathrm{1}+{e}^{−\alpha} \right)−{e}^{−\alpha} \right) \\ $$$${f}\left(\alpha\right)=\left({e}^{\alpha} +\mathrm{1}\right)\left({ln}\left({e}^{\alpha} +\mathrm{1}\right)−\alpha\right)−\mathrm{1} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com