All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 51834 by Abdo msup. last updated on 31/Dec/18
calculatef(a)=∫0∞ln(1+at2)1+t4dtwitha>0. 2)findthevalueof∫0∞ln(3+t2)1+t4dt.
Commented byAbdo msup. last updated on 31/Dec/18
1)wehavef′(a)=∫0∞t2(1+at2)(t4+1)dt =12∫−∞+∞t2(at2+1)(t4+1)dtlet φ(z)=z2(az2+1)(z4+1)wehave φ(z)=z2(az−i)(az+i)(z2−i)(z2+i) =z2a(z−ia)(z+ia)(z−eiπ4)(z+eiπ4)(z−e−iπ4)(z+e−iπ4) thepolesofφare+−iaand+−eiπ4and+−e−iπ4(allsimples) residustbeoremgive ∫−∞+∞φ(z)dz=2iπ{Res(φ,ia)+Res(φ,eiπ4)+Res(φ,−e−iπ4)} Res(φ,ia)=−1a22ia(1a2+1)=−a2i(1+a2)=ia2(1+a2) Res(φ,eiπ4)=i(ai+1)(2eiπ4)(2i)=e−iπ44(1+ai) Res(φ,−e−iπ4)=−i(1−ai)(−2e−iπ4)(−2i) =−eiπ44(1−ai)⇒ ∫−∞+∞φ(z)dz=2iπ{ia2(1+a2)−14(2iIm(eiπ41−ai)} =−πa1+a2−πIm(eiπ41−ai)but eiπ41−ai=eiπ4(1+ai)1+a2=(12+i2)(1+ai)1+a2 =12(1+i)(1+ai)1+a2=1+ai+i−a2(1+a2)=1−a+i(1+a)2(1+a2)⇒ ∫−∞+∞φ(z)dz=−πa1+a2−π1+a2(1+a2)⇒ f′(a)=−πa2(1+a2)−π(1+a)22(1+a2)⇒ f(a)=−π2∫ada1+a2−π22∫1+a1+a2da+c
Terms of Service
Privacy Policy
Contact: info@tinkutara.com