Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 51849 by ajfour last updated on 31/Dec/18

Commented by ajfour last updated on 31/Dec/18

Find diameter of semicircle in   given rectangle.

$${Find}\:{diameter}\:{of}\:{semicircle}\:{in} \\ $$$$\:{given}\:{rectangle}. \\ $$

Commented by mr W last updated on 31/Dec/18

i think only if (a/2)≤b≤2a there is a  solution. and there is only one such  semicircle in a given rectangle possible.  so the question is to find the area of  the semicircle, not the maximal area.

$${i}\:{think}\:{only}\:{if}\:\frac{{a}}{\mathrm{2}}\leqslant{b}\leqslant\mathrm{2}{a}\:{there}\:{is}\:{a} \\ $$$${solution}.\:{and}\:{there}\:{is}\:{only}\:{one}\:{such} \\ $$$${semicircle}\:{in}\:{a}\:{given}\:{rectangle}\:{possible}. \\ $$$${so}\:{the}\:{question}\:{is}\:{to}\:{find}\:{the}\:{area}\:{of} \\ $$$${the}\:{semicircle},\:{not}\:{the}\:{maximal}\:{area}. \\ $$

Commented by ajfour last updated on 31/Dec/18

yes Sir, i′ve edited; please attempt.

$${yes}\:{Sir},\:{i}'{ve}\:{edited};\:{please}\:{attempt}. \\ $$

Answered by MJS last updated on 31/Dec/18

M= ((0),(0) )  S= ((0),(r) )  T= (((−r)),(0) )  line PQ: y=ax  P= (((−(r/(√(a^2 +1))))),((−((ar)/(√(a^2 +1))))) )  Q= (((r/(√(a^2 +1)))),(((ar)/(√(a^2 +1)))) )  (1)  y_S −y_P =3  (2)  x_Q −x_T =5  (1)  r+((ar)/(√(a^2 +1)))=3  (2)  (r/(√(a^2 +1)))+r=5  (1)−a×(2) ⇒ r=((5a−3)/(a−1))  inserting in (1) or (2) leads to  r=8−(√(30))  a=(5/7)−((2(√(30)))/(21))

$${M}=\begin{pmatrix}{\mathrm{0}}\\{\mathrm{0}}\end{pmatrix}\:\:{S}=\begin{pmatrix}{\mathrm{0}}\\{{r}}\end{pmatrix}\:\:{T}=\begin{pmatrix}{−{r}}\\{\mathrm{0}}\end{pmatrix} \\ $$$$\mathrm{line}\:{PQ}:\:{y}={ax} \\ $$$${P}=\begin{pmatrix}{−\frac{{r}}{\sqrt{{a}^{\mathrm{2}} +\mathrm{1}}}}\\{−\frac{{ar}}{\sqrt{{a}^{\mathrm{2}} +\mathrm{1}}}}\end{pmatrix}\:\:{Q}=\begin{pmatrix}{\frac{{r}}{\sqrt{{a}^{\mathrm{2}} +\mathrm{1}}}}\\{\frac{{ar}}{\sqrt{{a}^{\mathrm{2}} +\mathrm{1}}}}\end{pmatrix} \\ $$$$\left(\mathrm{1}\right)\:\:{y}_{{S}} −{y}_{{P}} =\mathrm{3} \\ $$$$\left(\mathrm{2}\right)\:\:{x}_{{Q}} −{x}_{{T}} =\mathrm{5} \\ $$$$\left(\mathrm{1}\right)\:\:{r}+\frac{{ar}}{\sqrt{{a}^{\mathrm{2}} +\mathrm{1}}}=\mathrm{3} \\ $$$$\left(\mathrm{2}\right)\:\:\frac{{r}}{\sqrt{{a}^{\mathrm{2}} +\mathrm{1}}}+{r}=\mathrm{5} \\ $$$$\left(\mathrm{1}\right)−{a}×\left(\mathrm{2}\right)\:\Rightarrow\:{r}=\frac{\mathrm{5}{a}−\mathrm{3}}{{a}−\mathrm{1}} \\ $$$$\mathrm{inserting}\:\mathrm{in}\:\left(\mathrm{1}\right)\:\mathrm{or}\:\left(\mathrm{2}\right)\:\mathrm{leads}\:\mathrm{to} \\ $$$${r}=\mathrm{8}−\sqrt{\mathrm{30}} \\ $$$${a}=\frac{\mathrm{5}}{\mathrm{7}}−\frac{\mathrm{2}\sqrt{\mathrm{30}}}{\mathrm{21}} \\ $$

Commented by ajfour last updated on 31/Dec/18

Excellent Sir, Thanks a lot!  HAPPY  NEW YEAR !

$${Excellent}\:{Sir},\:{Thanks}\:{a}\:{lot}! \\ $$$$\mathcal{HAPPY}\:\:\mathcal{NEW}\:\mathcal{YEAR}\:! \\ $$

Commented by MJS last updated on 31/Dec/18

thank you, and all the best for you too!

$$\mathrm{thank}\:\mathrm{you},\:\mathrm{and}\:\mathrm{all}\:\mathrm{the}\:\mathrm{best}\:\mathrm{for}\:\mathrm{you}\:\mathrm{too}! \\ $$

Answered by mr W last updated on 31/Dec/18

Commented by mr W last updated on 31/Dec/18

R+R sin α=b⇒sin α=((b−R)/R)  R+R cos α=a⇒cos α=((a−R)/R)  (((b−R)/R))^2 +(((a−R)/R))^2 =1  R^2 −2(a+b)R+(a^2 +b^2 )=0  ⇒R=a+b−(√(2ab))    examples:  a=2b⇒R=3b−2b=b   b=2a⇒R=3a−2a=a  b=a⇒R=2a−(√2)a=(2−(√2))a

$${R}+{R}\:\mathrm{sin}\:\alpha={b}\Rightarrow\mathrm{sin}\:\alpha=\frac{{b}−{R}}{{R}} \\ $$$${R}+{R}\:\mathrm{cos}\:\alpha={a}\Rightarrow\mathrm{cos}\:\alpha=\frac{{a}−{R}}{{R}} \\ $$$$\left(\frac{{b}−{R}}{{R}}\right)^{\mathrm{2}} +\left(\frac{{a}−{R}}{{R}}\right)^{\mathrm{2}} =\mathrm{1} \\ $$$${R}^{\mathrm{2}} −\mathrm{2}\left({a}+{b}\right){R}+\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\Rightarrow{R}={a}+{b}−\sqrt{\mathrm{2}{ab}} \\ $$$$ \\ $$$${examples}: \\ $$$${a}=\mathrm{2}{b}\Rightarrow{R}=\mathrm{3}{b}−\mathrm{2}{b}={b}\: \\ $$$${b}=\mathrm{2}{a}\Rightarrow{R}=\mathrm{3}{a}−\mathrm{2}{a}={a} \\ $$$${b}={a}\Rightarrow{R}=\mathrm{2}{a}−\sqrt{\mathrm{2}}{a}=\left(\mathrm{2}−\sqrt{\mathrm{2}}\right){a} \\ $$

Commented by ajfour last updated on 31/Dec/18

best way Sir!

$${best}\:{way}\:{Sir}! \\ $$

Answered by ajfour last updated on 31/Dec/18

R = a+b−(√(2ab))     (I found).

$${R}\:=\:{a}+{b}−\sqrt{\mathrm{2}{ab}}\:\:\:\:\:\left({I}\:{found}\right). \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com