Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 51876 by Tinkutara last updated on 31/Dec/18

Commented by maxmathsup by imad last updated on 31/Dec/18

let solve y^′  +2y =f(x)  (e)  (he) ⇒y^′  +2y =0 ⇒(y^′ /y)=−2  ⇒ln(y)=−2x +k  ⇒y(x)=C e^(−2x)   mvc method give y^′ =C^′ e^(−2x)  −2C e^(−2x)   (e) ⇔ C^′  e^(−2x)  −2C e^(−2x)  +2C e^(−2x) =f(x) ⇒C^′ =f(x) e^(2x)  ⇒  C(x) =∫_0 ^x f(t)e^(2t) dt +λ  with λ=C(0)=y(0) ⇒  y(x)=( ∫_0 ^x  f(t) e^(2t) dt +y(0))e^(−2x)   so if y(o)=0 ⇒  y(x) =e^(−2x)  ∫_0 ^x f(t) e^(2t) dt ⇒y((3/2)) =e^(−3)  ∫_0 ^(3/2)  f(t)e^(2t)  dt  =e^(−3)  ∫_0 ^1  e^(2t)  dt =(e^(−3) /2)[ e^(2t) ]_0 ^1  =(e^(−3) /2)( e^2 −1) =((e^(−1)  −e^(−3) )/2) =((e^2  −1)/(2e^3 )) .

$${let}\:{solve}\:{y}^{'} \:+\mathrm{2}{y}\:={f}\left({x}\right)\:\:\left({e}\right) \\ $$$$\left({he}\right)\:\Rightarrow{y}^{'} \:+\mathrm{2}{y}\:=\mathrm{0}\:\Rightarrow\frac{{y}^{'} }{{y}}=−\mathrm{2}\:\:\Rightarrow{ln}\left({y}\right)=−\mathrm{2}{x}\:+{k}\:\:\Rightarrow{y}\left({x}\right)={C}\:{e}^{−\mathrm{2}{x}} \\ $$$${mvc}\:{method}\:{give}\:{y}^{'} ={C}^{'} {e}^{−\mathrm{2}{x}} \:−\mathrm{2}{C}\:{e}^{−\mathrm{2}{x}} \\ $$$$\left({e}\right)\:\Leftrightarrow\:{C}^{'} \:{e}^{−\mathrm{2}{x}} \:−\mathrm{2}{C}\:{e}^{−\mathrm{2}{x}} \:+\mathrm{2}{C}\:{e}^{−\mathrm{2}{x}} ={f}\left({x}\right)\:\Rightarrow{C}^{'} ={f}\left({x}\right)\:{e}^{\mathrm{2}{x}} \:\Rightarrow \\ $$$${C}\left({x}\right)\:=\int_{\mathrm{0}} ^{{x}} {f}\left({t}\right){e}^{\mathrm{2}{t}} {dt}\:+\lambda\:\:{with}\:\lambda={C}\left(\mathrm{0}\right)={y}\left(\mathrm{0}\right)\:\Rightarrow \\ $$$${y}\left({x}\right)=\left(\:\int_{\mathrm{0}} ^{{x}} \:{f}\left({t}\right)\:{e}^{\mathrm{2}{t}} {dt}\:+{y}\left(\mathrm{0}\right)\right){e}^{−\mathrm{2}{x}} \:\:{so}\:{if}\:{y}\left({o}\right)=\mathrm{0}\:\Rightarrow \\ $$$${y}\left({x}\right)\:={e}^{−\mathrm{2}{x}} \:\int_{\mathrm{0}} ^{{x}} {f}\left({t}\right)\:{e}^{\mathrm{2}{t}} {dt}\:\Rightarrow{y}\left(\frac{\mathrm{3}}{\mathrm{2}}\right)\:={e}^{−\mathrm{3}} \:\int_{\mathrm{0}} ^{\frac{\mathrm{3}}{\mathrm{2}}} \:{f}\left({t}\right){e}^{\mathrm{2}{t}} \:{dt} \\ $$$$={e}^{−\mathrm{3}} \:\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{\mathrm{2}{t}} \:{dt}\:=\frac{{e}^{−\mathrm{3}} }{\mathrm{2}}\left[\:{e}^{\mathrm{2}{t}} \right]_{\mathrm{0}} ^{\mathrm{1}} \:=\frac{{e}^{−\mathrm{3}} }{\mathrm{2}}\left(\:{e}^{\mathrm{2}} −\mathrm{1}\right)\:=\frac{{e}^{−\mathrm{1}} \:−{e}^{−\mathrm{3}} }{\mathrm{2}}\:=\frac{{e}^{\mathrm{2}} \:−\mathrm{1}}{\mathrm{2}{e}^{\mathrm{3}} }\:. \\ $$$$ \\ $$

Commented by Tinkutara last updated on 31/Dec/18

Thanks very much Sir!

Answered by tanmay.chaudhury50@gmail.com last updated on 31/Dec/18

(dy/dx)+2y=f(x)   [(dy/dx)+py=Q    I.F=e^(∫pdx) ]  intregating factor e^(∫pdx) =e^(∫2dx) =e^(2x)   e^(2x) (dy/dx)+e^(2x) ×2y=e^(2x) f(x)  e^(2x) ×(d/dx)(y)+y×(d/dx)(e^(2x) )=e^(2x) f(x)  (d/dx)[y.e^(2x) ]=e^(2x) f(x)  ∫d[ye^(2x) ]=∫e^(2x) f(x)dx    ∫_0 ^(3/2) d[ye^(2x) ]=∫_0 ^1 e^(2x) f(x)dx+∫_1 ^(3/2) e^(2x) f(x)dx  ∣ye^(2x) ∣_0 ^(3/2)  =∫_0 ^1 e^(2x) ×1dx+∫_1 ^(3/2) e^(2x) ×0dx  y((3/2))e^3 −y(0)e^(2×0) =∣(e^(2x) /2)∣_0 ^1   y((3/2))e^3 −0×e^0 =((e^2 −1)/2)  y((3/2))e^3 =e^2 −1  y((3/2))=((e^2 −1)/(2e^3 ))      now pls check....y((3/2))=((e^2 −1)/(2e^3 ))

$$\frac{{dy}}{{dx}}+\mathrm{2}{y}={f}\left({x}\right)\:\:\:\left[\frac{{dy}}{{dx}}+{py}={Q}\:\:\:\:{I}.{F}={e}^{\int{pdx}} \right] \\ $$$${intregating}\:{factor}\:{e}^{\int{pdx}} ={e}^{\int\mathrm{2}{dx}} ={e}^{\mathrm{2}{x}} \\ $$$${e}^{\mathrm{2}{x}} \frac{{dy}}{{dx}}+{e}^{\mathrm{2}{x}} ×\mathrm{2}{y}={e}^{\mathrm{2}{x}} {f}\left({x}\right) \\ $$$${e}^{\mathrm{2}{x}} ×\frac{{d}}{{dx}}\left({y}\right)+{y}×\frac{{d}}{{dx}}\left({e}^{\mathrm{2}{x}} \right)={e}^{\mathrm{2}{x}} {f}\left({x}\right) \\ $$$$\frac{{d}}{{dx}}\left[{y}.{e}^{\mathrm{2}{x}} \right]={e}^{\mathrm{2}{x}} {f}\left({x}\right) \\ $$$$\int{d}\left[{ye}^{\mathrm{2}{x}} \right]=\int{e}^{\mathrm{2}{x}} {f}\left({x}\right){dx} \\ $$$$ \\ $$$$\int_{\mathrm{0}} ^{\frac{\mathrm{3}}{\mathrm{2}}} {d}\left[{ye}^{\mathrm{2}{x}} \right]=\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{\mathrm{2}{x}} {f}\left({x}\right){dx}+\int_{\mathrm{1}} ^{\frac{\mathrm{3}}{\mathrm{2}}} {e}^{\mathrm{2}{x}} {f}\left({x}\right){dx} \\ $$$$\mid{ye}^{\mathrm{2}{x}} \mid_{\mathrm{0}} ^{\frac{\mathrm{3}}{\mathrm{2}}} \:=\int_{\mathrm{0}} ^{\mathrm{1}} {e}^{\mathrm{2}{x}} ×\mathrm{1}{dx}+\int_{\mathrm{1}} ^{\frac{\mathrm{3}}{\mathrm{2}}} {e}^{\mathrm{2}{x}} ×\mathrm{0}{dx} \\ $$$${y}\left(\frac{\mathrm{3}}{\mathrm{2}}\right){e}^{\mathrm{3}} −{y}\left(\mathrm{0}\right){e}^{\mathrm{2}×\mathrm{0}} =\mid\frac{{e}^{\mathrm{2}{x}} }{\mathrm{2}}\mid_{\mathrm{0}} ^{\mathrm{1}} \\ $$$${y}\left(\frac{\mathrm{3}}{\mathrm{2}}\right){e}^{\mathrm{3}} −\mathrm{0}×{e}^{\mathrm{0}} =\frac{{e}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}} \\ $$$${y}\left(\frac{\mathrm{3}}{\mathrm{2}}\right){e}^{\mathrm{3}} ={e}^{\mathrm{2}} −\mathrm{1} \\ $$$${y}\left(\frac{\mathrm{3}}{\mathrm{2}}\right)=\frac{{e}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}{e}^{\mathrm{3}} } \\ $$$$ \\ $$$$ \\ $$$$\boldsymbol{{now}}\:\boldsymbol{{pls}}\:\boldsymbol{{check}}....\boldsymbol{{y}}\left(\frac{\mathrm{3}}{\mathrm{2}}\right)=\frac{\boldsymbol{{e}}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}\boldsymbol{{e}}^{\mathrm{3}} } \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 31/Dec/18

i have rectified...pls check now...thsnks  for read between line

$$\boldsymbol{{i}}\:\boldsymbol{{have}}\:\boldsymbol{{rectified}}...\boldsymbol{{pls}}\:\boldsymbol{{check}}\:\boldsymbol{{now}}...\boldsymbol{{thsnks}} \\ $$$$\boldsymbol{{for}}\:\boldsymbol{{read}}\:\boldsymbol{{between}}\:\boldsymbol{{line}}\: \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 31/Dec/18

yes it is a mistake...let me rectify...

$${yes}\:{it}\:{is}\:{a}\:{mistake}...{let}\:{me}\:{rectify}... \\ $$

Commented by maxmathsup by imad last updated on 31/Dec/18

sir Tanmay your answer is correct.

$${sir}\:{Tanmay}\:{your}\:{answer}\:{is}\:{correct}. \\ $$

Commented by Tinkutara last updated on 01/Jan/19

Thank you very much Sir! I got the answer. ��������

Terms of Service

Privacy Policy

Contact: info@tinkutara.com