Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 51884 by ajfour last updated on 31/Dec/18

Commented by ajfour last updated on 31/Dec/18

Relate radius r of the two circles  (the same) with side length a of  the equilateral triangle.

$${Relate}\:{radius}\:\boldsymbol{{r}}\:{of}\:{the}\:{two}\:{circles} \\ $$$$\left({the}\:{same}\right)\:{with}\:{side}\:{length}\:\boldsymbol{{a}}\:{of} \\ $$$${the}\:{equilateral}\:{triangle}. \\ $$

Commented by mr W last updated on 01/Jan/19

(r/a)=(((√3)−(√2))/2)

$$\frac{{r}}{{a}}=\frac{\sqrt{\mathrm{3}}−\sqrt{\mathrm{2}}}{\mathrm{2}} \\ $$

Commented by ajfour last updated on 01/Jan/19

AD = ((a(√3))/2) = AS+SM+MQ+QD  ((a(√3))/2) = 2r+(r/(cos 2θ))+(r/(cos 2θ))+r    tan θ = ((2r)/a) = t  ((a(√3))/2) = 3r+((2r[1+(((2r)/a))^2 ])/([1−(((2r)/a))^2 ]))  let    (√3) = 3t+((2t(1+t^2 ))/(1−t^2 ))  (√3)−(√3)t^2 = 3t−3t^3 +2t+2t^3   t^3 −(√3)t^2 −5t+(√3) = 0

$${AD}\:=\:\frac{{a}\sqrt{\mathrm{3}}}{\mathrm{2}}\:=\:{AS}+{SM}+{MQ}+{QD} \\ $$$$\frac{{a}\sqrt{\mathrm{3}}}{\mathrm{2}}\:=\:\mathrm{2}{r}+\frac{{r}}{\mathrm{cos}\:\mathrm{2}\theta}+\frac{{r}}{\mathrm{cos}\:\mathrm{2}\theta}+{r} \\ $$$$\:\:\mathrm{tan}\:\theta\:=\:\frac{\mathrm{2}{r}}{{a}}\:=\:{t} \\ $$$$\frac{{a}\sqrt{\mathrm{3}}}{\mathrm{2}}\:=\:\mathrm{3}{r}+\frac{\mathrm{2}{r}\left[\mathrm{1}+\left(\frac{\mathrm{2}{r}}{{a}}\right)^{\mathrm{2}} \right]}{\left[\mathrm{1}−\left(\frac{\mathrm{2}{r}}{{a}}\right)^{\mathrm{2}} \right]} \\ $$$${let}\: \\ $$$$\:\sqrt{\mathrm{3}}\:=\:\mathrm{3}{t}+\frac{\mathrm{2}{t}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}{\mathrm{1}−{t}^{\mathrm{2}} } \\ $$$$\sqrt{\mathrm{3}}−\sqrt{\mathrm{3}}{t}^{\mathrm{2}} =\:\mathrm{3}{t}−\mathrm{3}{t}^{\mathrm{3}} +\mathrm{2}{t}+\mathrm{2}{t}^{\mathrm{3}} \\ $$$${t}^{\mathrm{3}} −\sqrt{\mathrm{3}}{t}^{\mathrm{2}} −\mathrm{5}{t}+\sqrt{\mathrm{3}}\:=\:\mathrm{0} \\ $$

Commented by ajfour last updated on 01/Jan/19

Answered by mr W last updated on 01/Jan/19

let α=∠PBC  BO=CO=(a/(2 cos α))  DO=((a tan α)/2)  Δ_(BOC) =(a/2)×((a tan α)/2)=(r/2)(a+2×(a/(2 cos α)))  ((a tan α)/2)=r(1+(1/(cos α)))  ⇒r=((a sin α)/(2(1+cos α)))=(a/2) tan (α/2) ...(i)  BR=((a sin α)/(sin ((π/3)+α)))  AR=a−((a sin α)/(sin ((π/3)+α)))=((sin ((π/3)+α)−sin α)/(sin ((π/3)+α)))×a  =(((√3) cos α−sin α)/((√3) cos α+sin α))×a  CR=((a sin (π/3))/(sin ((π/3)+α)))=(((√3) a)/((√3) cos α+sin α))  Δ_(ARC) =((a sin (π/3))/2)×(((√3) cos α−sin α)/((√3) cos α+sin α))×a=(r/2)(a+(((√3) cos α−sin α)/((√3) cos α+sin α))×a+(((√3) a)/((√3) cos α+sin α)))  ⇒r=(((√3) cos α−sin α)/(2(1+2 cos α)))×a   ...(ii)  ⇒((sin α)/(1+cos α))=(((√3) cos α−sin α)/(1+2 cos α))  ⇒2 tan α+3 sin α=(√3)(1+cos α)  with t=tan (α/2)  ⇒t^3 −(√3)t^2 −5t+(√3)=0  ⇒t=(√3)−(√2)  ⇒(r/a)=(t/2)=(((√3)−(√2))/2) ≈0.1589

$${let}\:\alpha=\angle{PBC} \\ $$$${BO}={CO}=\frac{{a}}{\mathrm{2}\:\mathrm{cos}\:\alpha} \\ $$$${DO}=\frac{{a}\:\mathrm{tan}\:\alpha}{\mathrm{2}} \\ $$$$\Delta_{{BOC}} =\frac{{a}}{\mathrm{2}}×\frac{{a}\:\mathrm{tan}\:\alpha}{\mathrm{2}}=\frac{{r}}{\mathrm{2}}\left({a}+\mathrm{2}×\frac{{a}}{\mathrm{2}\:\mathrm{cos}\:\alpha}\right) \\ $$$$\frac{{a}\:\mathrm{tan}\:\alpha}{\mathrm{2}}={r}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{cos}\:\alpha}\right) \\ $$$$\Rightarrow{r}=\frac{{a}\:\mathrm{sin}\:\alpha}{\mathrm{2}\left(\mathrm{1}+\mathrm{cos}\:\alpha\right)}=\frac{{a}}{\mathrm{2}}\:\mathrm{tan}\:\frac{\alpha}{\mathrm{2}}\:...\left({i}\right) \\ $$$${BR}=\frac{{a}\:\mathrm{sin}\:\alpha}{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{3}}+\alpha\right)} \\ $$$${AR}={a}−\frac{{a}\:\mathrm{sin}\:\alpha}{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{3}}+\alpha\right)}=\frac{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{3}}+\alpha\right)−\mathrm{sin}\:\alpha}{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{3}}+\alpha\right)}×{a} \\ $$$$=\frac{\sqrt{\mathrm{3}}\:\mathrm{cos}\:\alpha−\mathrm{sin}\:\alpha}{\sqrt{\mathrm{3}}\:\mathrm{cos}\:\alpha+\mathrm{sin}\:\alpha}×{a} \\ $$$${CR}=\frac{{a}\:\mathrm{sin}\:\frac{\pi}{\mathrm{3}}}{\mathrm{sin}\:\left(\frac{\pi}{\mathrm{3}}+\alpha\right)}=\frac{\sqrt{\mathrm{3}}\:{a}}{\sqrt{\mathrm{3}}\:\mathrm{cos}\:\alpha+\mathrm{sin}\:\alpha} \\ $$$$\Delta_{{ARC}} =\frac{{a}\:\mathrm{sin}\:\frac{\pi}{\mathrm{3}}}{\mathrm{2}}×\frac{\sqrt{\mathrm{3}}\:\mathrm{cos}\:\alpha−\mathrm{sin}\:\alpha}{\sqrt{\mathrm{3}}\:\mathrm{cos}\:\alpha+\mathrm{sin}\:\alpha}×{a}=\frac{{r}}{\mathrm{2}}\left({a}+\frac{\sqrt{\mathrm{3}}\:\mathrm{cos}\:\alpha−\mathrm{sin}\:\alpha}{\sqrt{\mathrm{3}}\:\mathrm{cos}\:\alpha+\mathrm{sin}\:\alpha}×{a}+\frac{\sqrt{\mathrm{3}}\:{a}}{\sqrt{\mathrm{3}}\:\mathrm{cos}\:\alpha+\mathrm{sin}\:\alpha}\right) \\ $$$$\Rightarrow{r}=\frac{\sqrt{\mathrm{3}}\:\mathrm{cos}\:\alpha−\mathrm{sin}\:\alpha}{\mathrm{2}\left(\mathrm{1}+\mathrm{2}\:\mathrm{cos}\:\alpha\right)}×{a}\:\:\:...\left({ii}\right) \\ $$$$\Rightarrow\frac{\mathrm{sin}\:\alpha}{\mathrm{1}+\mathrm{cos}\:\alpha}=\frac{\sqrt{\mathrm{3}}\:\mathrm{cos}\:\alpha−\mathrm{sin}\:\alpha}{\mathrm{1}+\mathrm{2}\:\mathrm{cos}\:\alpha} \\ $$$$\Rightarrow\mathrm{2}\:\mathrm{tan}\:\alpha+\mathrm{3}\:\mathrm{sin}\:\alpha=\sqrt{\mathrm{3}}\left(\mathrm{1}+\mathrm{cos}\:\alpha\right) \\ $$$${with}\:{t}=\mathrm{tan}\:\frac{\alpha}{\mathrm{2}} \\ $$$$\Rightarrow{t}^{\mathrm{3}} −\sqrt{\mathrm{3}}{t}^{\mathrm{2}} −\mathrm{5}{t}+\sqrt{\mathrm{3}}=\mathrm{0} \\ $$$$\Rightarrow{t}=\sqrt{\mathrm{3}}−\sqrt{\mathrm{2}} \\ $$$$\Rightarrow\frac{{r}}{{a}}=\frac{{t}}{\mathrm{2}}=\frac{\sqrt{\mathrm{3}}−\sqrt{\mathrm{2}}}{\mathrm{2}}\:\approx\mathrm{0}.\mathrm{1589} \\ $$

Commented by ajfour last updated on 01/Jan/19

Thank you Sir.

$${Thank}\:{you}\:{Sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com