Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 51905 by Tawa1 last updated on 01/Jan/19

If   p  =  cos θ + i sinθ           and       q  =  cos φ + i sin φ  Show that:  (i)      ((p − q)/(p + q))  =  i tan (((θ − φ)/2))  (ii)   (((p + q)(pq − 1))/((p − q)(pq + 1)))  =  ((sin θ + sin φ)/(sin θ − sin φ))

Ifp=cosθ+isinθandq=cosϕ+isinϕShowthat:(i)pqp+q=itan(θϕ2)(ii)(p+q)(pq1)(pq)(pq+1)=sinθ+sinϕsinθsinϕ

Answered by Kunal12588 last updated on 01/Jan/19

((p−q)/(p+q))=((cosθ+isinθ−cosφ−isinφ)/(cosθ+isinθ+cosφ+isinφ))  =(((cosθ−cosφ)+(sinθ−sinφ)i)/((cosθ+cosφ)+(sinθ+sinφ)i))=((−sin((θ+φ)/2)sin((θ−φ)/2)+cos((θ+φ)/2)sin((θ−φ)/2)i)/(cos((θ+φ)/2)cos((θ−φ)/2)+sin((θ+φ)/2)cos((θ−φ)/2)i))  =((sin((θ−φ)/2)(cos((θ+φ)/2)i−sin((θ+φ)/2))(sin((θ+φ)/2)i−cos((θ+φ)/2)))/(cos((θ−φ)/2)(sin((θ+φ)/2)i+cos((θ+φ)/2))(sin((θ+φ)/2)i−cos((θ+φ)/2))))  =−tan((θ−φ)/2)(−cos^2 ((θ+φ)/2)−sin^2 ((θ+φ)/2))i  =itan((θ−φ)/2)

pqp+q=cosθ+isinθcosϕisinϕcosθ+isinθ+cosϕ+isinϕ=(cosθcosϕ)+(sinθsinϕ)i(cosθ+cosϕ)+(sinθ+sinϕ)i=sinθ+ϕ2sinθϕ2+cosθ+ϕ2sinθϕ2icosθ+ϕ2cosθϕ2+sinθ+ϕ2cosθϕ2i=sinθϕ2(cosθ+ϕ2isinθ+ϕ2)(sinθ+ϕ2icosθ+ϕ2)cosθϕ2(sinθ+ϕ2i+cosθ+ϕ2)(sinθ+ϕ2icosθ+ϕ2)=tanθϕ2(cos2θ+ϕ2sin2θ+ϕ2)i=itanθϕ2

Commented by malwaan last updated on 01/Jan/19

no(ii)

no(ii)

Commented by Tawa1 last updated on 01/Jan/19

God bless you sir

Godblessyousir

Answered by $@ty@m last updated on 01/Jan/19

(p/q)=((cos θ+isin θ)/(cos ∅+isin φ))  =(cos θ+isin θ)(cos ∅−isin φ)  =cos (θ−∅)+isin (θ−∅)  (i)  ((p − q)/(p + q))  =  (((p/q)−1)/((p/q)+1))  =((cos (θ−∅)+isin (θ−∅)−1)/(cos (θ−∅)+isin (θ−∅)+1))  =((isin (θ−∅)−{1−cos (θ−∅)})/(isin (θ−∅)+{1+cos (θ−∅)}))  =((i.2sin (((θ−∅))/2)cos (((θ−∅))/2)−2sin^2 (((θ−∅) )/2))/( i.2sin (((θ−∅))/2)cos (((θ−∅))/2)+2cos ^2 (((θ−∅) )/2)))  =((2sin (((θ−∅))/2){icos (((θ−∅))/2)−sin (((θ−∅) )/2)})/(2cos (((θ−∅))/2){i.sin (((θ−∅))/2)+cos (((θ−∅))/2)}))  =((i.sin (((θ−∅))/2){cos (((θ−∅))/2)+isin (((θ−∅) )/2)})/(cos (((θ−∅))/2){i.sin (((θ−∅))/2)+cos (((θ−∅))/2)}))  =itan (((θ−∅))/2)

pq=cosθ+isinθcos+isinϕ=(cosθ+isinθ)(cosisinϕ)=cos(θ)+isin(θ)(i)pqp+q=pq1pq+1=cos(θ)+isin(θ)1cos(θ)+isin(θ)+1=isin(θ){1cos(θ)}isin(θ)+{1+cos(θ)}=i.2sin(θ)2cos(θ)22sin2(θ)2i.2sin(θ)2cos(θ)2+2cos2(θ)2=2sin(θ)2{icos(θ)2sin(θ)2}2cos(θ)2{i.sin(θ)2+cos(θ)2}=i.sin(θ)2{cos(θ)2+isin(θ)2}cos(θ)2{i.sin(θ)2+cos(θ)2}=itan(θ)2

Commented by Tawa1 last updated on 01/Jan/19

God bless you sir.  Seen

Godblessyousir.Seen

Commented by $@ty@m last updated on 01/Jan/19

(ii) (((p+q)(pq−1))/((p−q)(pq+1)))  We have,  ((p−q)/(p+q))=−icot((θ−∅)/2) ....(1) already proved in (i).  Now,  ((pq−1)/(pq+1))=((cos (θ+φ)+isin (θ+∅)−1)/(cos (θ+∅)+isin (θ+∅)+1))  =((isin (θ+∅)−{1−cos (θ+φ)})/(isin (θ+∅)+{1+cos (θ+φ)}))  =((i.2sin((θ+∅)/2)cos((θ+∅)/2) −2sin^2 ((θ+∅)/2))/(i.2sin ((θ+∅)/2)cos ((θ+∅)/2)+2cos^2 ((θ+∅)/2)))  =((2i.sin((θ+∅)/2){cos((θ+∅)/2) +isin((θ+∅)/2)})/(2cos  ((θ+∅)/2){cos((θ+∅)/2) +isin((θ+∅)/2)}))  =i.tan ((θ+∅)/2) ...(2)  by (1)×(2), we get   (((p+q)(pq−1))/((p−q)(pq+1)))=−icot((θ−∅)/2)×itan ((θ+∅)/2)  =((sin ((θ+∅)/2).cos ((θ−∅)/2))/(cos ((θ+∅)/2).sin ((θ−∅)/2)))  =((2sin ((θ+∅)/2).cos ((θ−∅)/2))/(2cos ((θ+∅)/2).sin ((θ−∅)/2)))  =((sin θ+sin ∅)/(sin θ−sin ∅))  Hence the result.

(ii)(p+q)(pq1)(pq)(pq+1)Wehave,pqp+q=icotθ2....(1)alreadyprovedin(i).Now,pq1pq+1=cos(θ+ϕ)+isin(θ+)1cos(θ+)+isin(θ+)+1=isin(θ+){1cos(θ+ϕ)}isin(θ+)+{1+cos(θ+ϕ)}=i.2sinθ+2cosθ+22sin2θ+2i.2sinθ+2cosθ+2+2cos2θ+2=2i.sinθ+2{cosθ+2+isinθ+2}2cosθ+2{cosθ+2+isinθ+2}=i.tanθ+2...(2)by(1)×(2),weget(p+q)(pq1)(pq)(pq+1)=icotθ2×itanθ+2=sinθ+2.cosθ2cosθ+2.sinθ2=2sinθ+2.cosθ22cosθ+2.sinθ2=sinθ+sinsinθsinHencetheresult.

Commented by $@ty@m last updated on 01/Jan/19

I was in hurry in the morning. So,  there were few typing mistake crept  in solution of (i), which I have  corrected.

Iwasinhurryinthemorning.So,therewerefewtypingmistakecreptinsolutionof(i),whichIhavecorrected.

Commented by peter frank last updated on 01/Jan/19

nice method sir

nicemethodsir

Commented by Tawa1 last updated on 01/Jan/19

God bless you sir

Godblessyousir

Commented by Tawa1 last updated on 01/Jan/19

Have tried but cannot simplify, please help if you have time sir

Havetriedbutcannotsimplify,pleasehelpifyouhavetimesir

Commented by $@ty@m last updated on 01/Jan/19

done above...

doneabove...

Commented by malwaan last updated on 05/Jan/19

thank you sir

thankyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com