Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 51910 by Meritguide1234 last updated on 01/Jan/19

Commented by Abdo msup. last updated on 01/Jan/19

let find firstI_n = ∫_0 ^π  cos^n x cos(nx)dx with n from N  I_n =Re( ∫_0 ^π  cos^n x e^(inx) dx) and  ∫_0 ^π  cos^n x e^(inx) dx =∫_0 ^π  (((e^(ix)  +e^(−ix) )/2))^n  e^(inx) dx  =(1/2^n ) ∫_0 ^π   (Σ_(k=0) ^n  C_n ^k   e^(ikx)   (e^(−i(n−k)x) )e^(inx) dx  =(1/2^n ) ∫_0 ^π (Σ_(k=0) ^n  C_n ^k   e^(i2kx) )dx  =(1/2^n ) Σ_(k=0) ^n  ∫_0 ^π    e^(2ikx) dx =(1/2^n )(π +Σ_(k=1) ^n [(1/(2ik)) e^(2ikx) ]_0 ^π )  =(π/2^n ) ⇒(π/I_n ) = 2^n    ⇒log_2 ((π/I_n ))=n ⇒  log_2 (  (π/(∫_0 ^π cos^(2019) xcos(2019)xdx)))=2019 .

$${let}\:{find}\:{firstI}_{{n}} =\:\int_{\mathrm{0}} ^{\pi} \:{cos}^{{n}} {x}\:{cos}\left({nx}\right){dx}\:{with}\:{n}\:{from}\:{N} \\ $$$${I}_{{n}} ={Re}\left(\:\int_{\mathrm{0}} ^{\pi} \:{cos}^{{n}} {x}\:{e}^{{inx}} {dx}\right)\:{and} \\ $$$$\int_{\mathrm{0}} ^{\pi} \:{cos}^{{n}} {x}\:{e}^{{inx}} {dx}\:=\int_{\mathrm{0}} ^{\pi} \:\left(\frac{{e}^{{ix}} \:+{e}^{−{ix}} }{\mathrm{2}}\right)^{{n}} \:{e}^{{inx}} {dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\:\int_{\mathrm{0}} ^{\pi} \:\:\left(\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:\:{e}^{{ikx}} \:\:\left({e}^{−{i}\left({n}−{k}\right){x}} \right){e}^{{inx}} {dx}\right. \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\:\int_{\mathrm{0}} ^{\pi} \left(\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:\:{e}^{{i}\mathrm{2}{kx}} \right){dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\:\sum_{{k}=\mathrm{0}} ^{{n}} \:\int_{\mathrm{0}} ^{\pi} \:\:\:{e}^{\mathrm{2}{ikx}} {dx}\:=\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\left(\pi\:+\sum_{{k}=\mathrm{1}} ^{{n}} \left[\frac{\mathrm{1}}{\mathrm{2}{ik}}\:{e}^{\mathrm{2}{ikx}} \right]_{\mathrm{0}} ^{\pi} \right) \\ $$$$=\frac{\pi}{\mathrm{2}^{{n}} }\:\Rightarrow\frac{\pi}{{I}_{{n}} }\:=\:\mathrm{2}^{{n}} \:\:\:\Rightarrow{log}_{\mathrm{2}} \left(\frac{\pi}{{I}_{{n}} }\right)={n}\:\Rightarrow \\ $$$${log}_{\mathrm{2}} \left(\:\:\frac{\pi}{\int_{\mathrm{0}} ^{\pi} {cos}^{\mathrm{2019}} {xcos}\left(\mathrm{2019}\right){xdx}}\right)=\mathrm{2019}\:. \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 01/Jan/19

excllent...

$${excllent}... \\ $$

Commented by Meritguide1234 last updated on 01/Jan/19

good

$${good} \\ $$

Commented by maxmathsup by imad last updated on 01/Jan/19

thanks...

$${thanks}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com