Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 51933 by Tawa1 last updated on 01/Jan/19

If  p = cos θ + i sin θ         and         q  =  cos φ + i sin φ  Show that         (((p + q)(pq − 1))/((p − q)(pq + 1)))  =  ((sin θ + sin φ)/(sin θ − sin φ))

Ifp=cosθ+isinθandq=cosϕ+isinϕShowthat(p+q)(pq1)(pq)(pq+1)=sinθ+sinϕsinθsinϕ

Commented by peter frank last updated on 01/Jan/19

Answered by tanmay.chaudhury50@gmail.com last updated on 01/Jan/19

p=e^(iθ)    q=e^(i∅)   LHS  (((p+q)(pq−1))/((p−q)((pq+1)))  ((((p/q)+1))/(pq+1))×((pq−1)/((p/q)−1))  =((e^(i(θ−∅)) +1)/(e^(i(θ+∅)) +1))×((e^(i(θ+∅)) −1)/(e^(i(θ−∅)) −1))  =((cos(θ−∅)+isin(θ−∅)+1)/(cos(θ+∅)+isin(θ+∅)+1))×((cos(θ+∅)+isin(θ+∅)−1)/(cos(θ−∅)+isin(θ−∅)−1))  =((2cos^2 ((θ−∅)/2)+i2sin((θ−∅)/2)cos((θ−∅)/2))/(2cos^2 ((θ+∅)/2)+i2sin((θ+∅)/2)cos((θ+φ)/2)))×((1−cos(θ+∅)−isin(θ+φ))/(1−cos(θ−∅)−isin(θ−∅)))  =((2cos((θ−∅)/2)[cos((θ−∅)/2)+isin((θ−∅)/2)])/(2cos((θ+∅)/2)[cos((θ+∅)/2)+isin((θ+∅)/2)]))×((2sin^2 ((θ+∅)/2)−2isin((θ+φ)/2)cos((θ+∅)/2))/(2sin^2 ((θ−φ)/2)−2isin((θ−∅)/2)cos((θ−φ)/2)))  =((cos((θ−∅)/2))/(cos((θ+∅)/2)))×e^(i(((θ−∅)/2))−i(((θ+∅)/2))) ×((2sin((θ+∅)/2))/(2sin((θ−φ)/2)))×(([sin((θ+∅)/2)−icos((θ+∅)/2)])/([sin((θ−∅)/2)−icos((θ−∅)/2)]))  ((tan((θ+φ)/2))/(tan((θ−φ)/2)))×e^(i(((θ−φ−θ−φ)/2))) ×(e^(−i[(π/2)−(((θ+φ)/2))]) /e^(−i[(π/2)−(((θ−∅)/2))]) )  =((tan((θ+φ)/2))/(tan((θ−∅)/2)))×e^(−iφ) ×e^(−((iπ)/2)+i(((θ+φ))/2)+((iπ)/2)−i(((θ−∅)/2)))   =((tan((θ+∅)/2))/(tan((θ−φ)/2)))×e^(−i∅) ×e^(i(((θ+∅−θ+φ)/2)))   =((tan((θ+∅)/2))/(tan((θ−∅)/2)))×e^(−i∅+i∅)   =((2sin((θ+∅)/2)cos((θ−∅)/2))/(2sin((θ−∅)/2)cos((θ+∅)/2)))  =((sinθ+sin∅)/(sinθ−sin∅))

p=eiθq=eiLHS(p+q)(pq1)(pq)((pq+1)(pq+1)pq+1×pq1pq1=ei(θ)+1ei(θ+)+1×ei(θ+)1ei(θ)1=cos(θ)+isin(θ)+1cos(θ+)+isin(θ+)+1×cos(θ+)+isin(θ+)1cos(θ)+isin(θ)1=2cos2θ2+i2sinθ2cosθ22cos2θ+2+i2sinθ+2cosθ+ϕ2×1cos(θ+)isin(θ+ϕ)1cos(θ)isin(θ)=2cosθ2[cosθ2+isinθ2]2cosθ+2[cosθ+2+isinθ+2]×2sin2θ+22isinθ+ϕ2cosθ+22sin2θϕ22isinθ2cosθϕ2=cosθ2cosθ+2×ei(θ2)i(θ+2)×2sinθ+22sinθϕ2×[sinθ+2icosθ+2][sinθ2icosθ2]tanθ+ϕ2tanθϕ2×ei(θϕθϕ2)×ei[π2(θ+ϕ2)]ei[π2(θ2)]=tanθ+ϕ2tanθ2×eiϕ×eiπ2+i(θ+ϕ)2+iπ2i(θ2)=tanθ+2tanθϕ2×ei×ei(θ+θ+ϕ2)=tanθ+2tanθ2×ei+i=2sinθ+2cosθ22sinθ2cosθ+2=sinθ+sinsinθsin

Commented by Tawa1 last updated on 01/Jan/19

God bless you sir. I really appreciate your time.

Godblessyousir.Ireallyappreciateyourtime.

Answered by $@ty@m last updated on 01/Jan/19

see my solution to  Q. No. 51905

seemysolutiontoQ.No.51905

Commented by Tawa1 last updated on 01/Jan/19

God bless you sir. Thanks for your time.

Godblessyousir.Thanksforyourtime.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com