Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 51942 by mr W last updated on 01/Jan/19

Commented by mr W last updated on 01/Jan/19

Find the sum of all corner angles  of a n−corner star.  α_1 +α_2 +α_3 +...+α_n =?  (n=odd integer, n≥5)

Findthesumofallcorneranglesofancornerstar.α1+α2+α3+...+αn=?(n=oddinteger,n5)

Commented by tanmay.chaudhury50@gmail.com last updated on 01/Jan/19

Commented by mr W last updated on 01/Jan/19

thank you sir!

thankyousir!

Commented by tanmay.chaudhury50@gmail.com last updated on 01/Jan/19

n sided star form n sided polygon.  The sum of internal angles of n sided polygon  x_1 +x_2 +x_3 +...+x_n =nπ−2π  we have to find the value of  α_1 +α_2 +α_3 +...α_n   now consider any one triangle  α_1 +a_1 +a_2 =π  a_1 +x_1 =π  a_1 =π−x_1   a_2 +x_2 =π   a_2 =π−x_2   so α_1 +π−x_1 +π−x_2 =π  α_1 =x_1 +x_2 −π  α_2 =x_2 +x_3 −π  .....  .....  α_1 +α_2 +α_3 +....+α_n =2(x_1 +x_2 +x_3 +..+x_n )−nπ  so   α_1 +α_2 +...+α_n =2[nπ−2π]−nπ                                   =nπ−4π  pls check i have derived the formula...

nsidedstarformnsidedpolygon.Thesumofinternalanglesofnsidedpolygonx1+x2+x3+...+xn=nπ2πwehavetofindthevalueofα1+α2+α3+...αnnowconsideranyonetriangleα1+a1+a2=πa1+x1=πa1=πx1a2+x2=πa2=πx2soα1+πx1+πx2=πα1=x1+x2πα2=x2+x3π..........α1+α2+α3+....+αn=2(x1+x2+x3+..+xn)nπsoα1+α2+...+αn=2[nπ2π]nπ=nπ4πplscheckihavederivedtheformula...

Commented by mr W last updated on 01/Jan/19

Σα=π !  consider the case that the corners are  on a circle, then we have  sum of all central angles=Σ(2α)=2π  ⇒Σα=π

Σα=π!considerthecasethatthecornersareonacircle,thenwehavesumofallcentralangles=Σ(2α)=2πΣα=π

Answered by mr W last updated on 01/Jan/19

Commented by mr W last updated on 01/Jan/19

(α_1 +β_1 )+(α_2 +γ_2 )+α_(n−2) =π   (triangle)  Σα+Σβ+Σα+Σγ+Σα=nπ  2Σα+(Σα+Σβ+Σγ)=nπ  since Σα+Σβ+Σγ=(n−2)π   (n−side polygon)  ⇒2Σα+(n−2)π=nπ  ⇒Σα=π  this is independent from n.

(α1+β1)+(α2+γ2)+αn2=π(triangle)Σα+Σβ+Σα+Σγ+Σα=nπ2Σα+(Σα+Σβ+Σγ)=nπsinceΣα+Σβ+Σγ=(n2)π(nsidepolygon)2Σα+(n2)π=nπΣα=πthisisindependentfromn.

Commented by mr W last updated on 02/Jan/19

yes sir. but here it doesn′t matter how  we call it.

yessir.buthereitdoesntmatterhowwecallit.

Commented by mr W last updated on 01/Jan/19

such stars can only have odd number  of corners. they are no “normal” polygons, but  consist of diagonals of a “normal” polygon with  odd number of sides.

suchstarscanonlyhaveoddnumberofcorners.theyarenonormalpolygons,butconsistofdiagonalsofanormalpolygonwithoddnumberofsides.

Commented by mr W last updated on 01/Jan/19

Terms of Service

Privacy Policy

Contact: info@tinkutara.com