Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 51987 by maxmathsup by imad last updated on 01/Jan/19

calculate ∫_0 ^(1/2) (√(1−x^4 ))dx

calculate0121x4dx

Commented by Abdo msup. last updated on 02/Jan/19

let A =∫_0 ^(1/2) (√(1−x^4 ))dx ⇒A=∫_0 ^(1/2) (√(1−x^2 ))(√(1+x^2 ))dx  =_(x^2 =cost)     ∫_1 ^(π/3) (√(1−cost))(√(1+cost))((−sint)/(2(√(cost)))) dt  =−∫_1 ^(π/3)  (√2)sin((t/2))(√2)cos((t/2))  ((sint)/(2(√(cost))))dt  =−∫_1 ^(π/3)  sin((t/2))cos((t/2)) ((sint)/(√(cost)))dt  =− ∫_1 ^(π/3)  (1/2) ((sin^2 t)/(√(cost))) dt =−(1/2) ∫_1 ^(π/3)  ((1−cos^2 t)/(√(cost))) dt  =−(1/2) ∫_1 ^(π/3)  (dt/(√(cost))) +∫_1 ^(π/3)   ((cos^2 t)/(√(cost))) dt ....  be continued...

letA=0121x4dxA=0121x21+x2dx=x2=cost1π31cost1+costsint2costdt=1π32sin(t2)2cos(t2)sint2costdt=1π3sin(t2)cos(t2)sintcostdt=1π312sin2tcostdt=121π31cos2tcostdt=121π3dtcost+1π3cos2tcostdt....becontinued...

Answered by peter frank last updated on 01/Jan/19

∫(√((1+x^2 )(1−x^2 )))  x^2 =sin θ⇒  2xdx=cos θdθ    ∫(√((1+sin θ)(1−sin θ))) dx  ∫(√(1−sin^2  ))   ((cos θdθ)/(2x))    (1/2)∫((cos^2 θdθ)/x)  (1/2)∫((cos^2 θdθ)/(√(sin θ)))  .....

(1+x2)(1x2)x2=sinθ2xdx=cosθdθ(1+sinθ)(1sinθ)dx1sin2cosθdθ2x12cos2θdθx12cos2θdθsinθ.....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com