All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 51987 by maxmathsup by imad last updated on 01/Jan/19
calculate∫0121−x4dx
Commented by Abdo msup. last updated on 02/Jan/19
letA=∫0121−x4dx⇒A=∫0121−x21+x2dx=x2=cost∫1π31−cost1+cost−sint2costdt=−∫1π32sin(t2)2cos(t2)sint2costdt=−∫1π3sin(t2)cos(t2)sintcostdt=−∫1π312sin2tcostdt=−12∫1π31−cos2tcostdt=−12∫1π3dtcost+∫1π3cos2tcostdt....becontinued...
Answered by peter frank last updated on 01/Jan/19
∫(1+x2)(1−x2)x2=sinθ⇒2xdx=cosθdθ∫(1+sinθ)(1−sinθ)dx∫1−sin2cosθdθ2x12∫cos2θdθx12∫cos2θdθsinθ.....
Terms of Service
Privacy Policy
Contact: info@tinkutara.com