Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 51997 by maxmathsup by imad last updated on 01/Jan/19

let f(x)=∫_0 ^(π/2)     (dt/(1+xsint))  with x>−1  1) calculate f(o) ,f(1) and f(2)  2) give f at form of function

letf(x)=0π2dt1+xsintwithx>1 1)calculatef(o),f(1)andf(2) 2)givefatformoffunction

Commented bymaxmathsup by imad last updated on 02/Jan/19

1) we have f(0)=∫_0 ^(π/2) dt =(π/2)  f(1) =∫_0 ^(π/2)   (dt/(1+sint)) =_(tan((t/2))=u)    ∫_0 ^1    (1/(1+((2u)/(1+u^2 )))) ((2du)/(1+u^2 )) =2 ∫_0 ^1    (du/(1+u^2  +2u))  =2∫_0 ^1    (du/((u+1)^2 )) =[−(2/(u+1))]_0 ^1  =−2((1/2) −1) =−1+2 =1 ⇒f(1)=1  f(2) =∫_0 ^(π/2)    (dt/(1+2sint)) =_(tan((t/2))=u)  ∫_0 ^1    (1/(1+2((2u)/(1+u^2 )))) ((2du)/(1+u^2 ))  =2 ∫_0 ^1    (du/(1+u^2  +4u)) =2 ∫_0 ^1   (du/(u^2  +4u +1))  .roots of u^2  +4u +1  Δ^′ =2^2 −1  =3 ⇒u_1 =−2+(√3)  and u_2 =−2−(√3)  f(2) =2 ∫_0 ^1  (du/((u−u_1 )(u−u_2 ))) =(2/(u_1 −u_2 )) ∫_0 ^1  ((1/(u−u_1 )) −(1/(u−u_2 )))du  =(2/(2(√3))) ∫_0 ^1 { (1/(u−u_1 )) −(1/(u−u_2 ))}du =(1/(√3))[ln∣((u−u_1 )/(u−u_2 ))∣]_0 ^1 =(1/(√3)){ln∣((1−u_1 )/(1−u_2 ))∣−ln∣(u_1 /u_2 )∣}  =(1/(√3)){ln∣((3−(√3))/(3+(√3)))∣−ln∣((2−(√3))/(2+(√3)))∣ .

1)wehavef(0)=0π2dt=π2 f(1)=0π2dt1+sint=tan(t2)=u0111+2u1+u22du1+u2=201du1+u2+2u =201du(u+1)2=[2u+1]01=2(121)=1+2=1f(1)=1 f(2)=0π2dt1+2sint=tan(t2)=u0111+22u1+u22du1+u2 =201du1+u2+4u=201duu2+4u+1.rootsofu2+4u+1 Δ=221=3u1=2+3andu2=23 f(2)=201du(uu1)(uu2)=2u1u201(1uu11uu2)du =22301{1uu11uu2}du=13[lnuu1uu2]01=13{ln1u11u2lnu1u2} =13{ln333+3ln232+3.

Commented bymaxmathsup by imad last updated on 02/Jan/19

2)changement tan((t/2))=u give f(x)=∫_0 ^1    (1/(1+x((2u)/(1+u^2 )))) ((2du)/(1+u^2 ))  =2∫_0 ^1   (du/(1+u^2  +2xu)) =2 ∫_0 ^1   (du/(u^2  +2xu +1)) let p(u)=u^2  +2xu +1  Δ^′ =x^2 −1  case1  Δ^′ >0 ⇔∣x∣>1  ⇒u_1 =−x+(√(x^2 −1)) and u_2 =−x−(√(x^2 −1))  ⇒f(x)=2 ∫_0 ^1    (du/((u−u_1 )(u−u_2 ))) =(2/(u_1 −u_2 ))∫_0 ^1 { (1/(u−u_1 )) −(1/(u−u_2 ))}du  =(2/(2(√(1−x^2 )))) [ln∣((u−u_1 )/(u−u_2 ))∣]_0 ^1 =(1/(√(1−x^2 ))){ln∣((1−u_1 )/(1−u_2 ))∣−ln∣(u_1 /u_2 )∣}  =(1/(√(1−x^2 ))){ln∣((1+x−(√(x^2 −1)))/(1+x+(√(x^2 −1))))∣−ln∣((x−(√(x^2 −1)))/(x+(√(x^2 −1))))∣}  case2  Δ^′ <0 ⇔∣x∣<1 ⇒p(u)=u^2  +2xu +x^2  +1−x^2 =(u+x)^2 +1−x^2   we do the changement u+x=(√(1−x^2 ))α ⇒  f(x) =2 ∫_0 ^1  (du/((u+x)^2  +1−x^2 )) =2 ∫_(x/(√(1−x^2 ))) ^((1+x)/(√(1−x^2 )))      (((√(1−x^2 ))dα)/((1−x^2 )(1+α^2 )))  = (2/(√(1−x^2 ))) [arctan(α)]_(x/(√(1−x^2 ))) ^((1+x)/(√(1−x^2 )))   =(2/(√(1−x^2 ))) { arctan((√((1+x)/(1−x))))−arctan((x/(√(1−x^2 ))))} .

2)changementtan(t2)=ugivef(x)=0111+x2u1+u22du1+u2 =201du1+u2+2xu=201duu2+2xu+1letp(u)=u2+2xu+1 Δ=x21 case1Δ>0⇔∣x∣>1u1=x+x21andu2=xx21 f(x)=201du(uu1)(uu2)=2u1u201{1uu11uu2}du =221x2[lnuu1uu2]01=11x2{ln1u11u2lnu1u2} =11x2{ln1+xx211+x+x21lnxx21x+x21} case2Δ<0⇔∣x∣<1p(u)=u2+2xu+x2+1x2=(u+x)2+1x2 wedothechangementu+x=1x2α f(x)=201du(u+x)2+1x2=2x1x21+x1x21x2dα(1x2)(1+α2) =21x2[arctan(α)]x1x21+x1x2=21x2{arctan(1+x1x)arctan(x1x2)}.

Answered by Smail last updated on 02/Jan/19

let u=tan(t/2)⇒dt=((2du)/(1+u^2 ))  sint=((2u)/(1+u^2 ))  f(x)=2∫_0 ^1 (du/((1+u^2 )(1+((2xu)/(1+u^2 )))))  =2∫_0 ^1 (du/(u^2 +2xu+1))=2∫_0 ^1 (du/((u+x)^2 +1−x^2 ))  if −1<x≤1  f(x)=(2/(1−x^2 ))∫_0 ^1 (du/((((u+x)/(√(1−x^2 ))))^2 +1))  θ=((u+x)/(√(1−x^2 )))⇒dθ=(du/(√(1−x^2 )))  f(x)=(2/(√(1−x^2 )))∫_(x/(√(1−x^2 ))) ^((1+x)/(√(1−x^2 ))) (dθ/(θ^2 +1))  =(2/(√(1−x^2 )))[tan^(−1) (θ)]_(x/(√(1−x^2 ))) ^((1+x)/(√(1−x^2 )))   =(2/(√(1−x^2 )))(tan^(−1) (((1+x)/(√(1−x^2 ))))−tan^(−1) ((x/(√(1−x^2 )))))

letu=tan(t/2)dt=2du1+u2 sint=2u1+u2 f(x)=201du(1+u2)(1+2xu1+u2) =201duu2+2xu+1=201du(u+x)2+1x2 if1<x1 f(x)=21x201du(u+x1x2)2+1 θ=u+x1x2dθ=du1x2 f(x)=21x2x/1x2(1+x)/1x2dθθ2+1 =21x2[tan1(θ)]x/1x2(1+x)/1x2 =21x2(tan1(1+x1x2)tan1(x1x2))

Terms of Service

Privacy Policy

Contact: info@tinkutara.com