Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 52025 by Tawa1 last updated on 02/Jan/19

Commented by Abdo msup. last updated on 03/Jan/19

8)(x+1)^6 +(x−1)^6 =0 ⇔(((x−1)^6 )/((x+1)^6 )) =−1 ⇔  (((x−1)/(x+1)))^6  =−1  let ((x−1)/(x+1)) =z ⇒z^6 =−1 ⇒  z^6  =e^(i(2k+1)π)  ⇒the roots of this (e) are  z_k =e^(i(((2k+1)π)/6))   and k∈[[0,5]] ⇒the roots of the first  (e) are x_k /      ((x_k −1)/(x_k +1)) =z_k  ⇒x_k −1 =z_k x_k  +z_k ⇒  (1−z_k )x_k = 1+z_k  ⇒x_k =((1+z_k )/(1−z_k ))  =((1+cos(((2k+1)/6)π) +isin((((2k+1)π)/6)))/(1−cos((((2k+1)π)/6))−isin((((2k+1)π)/6))))  =((2cos^2 ((((2k+1)π)/(12))) +2isin((((2k+1)π)/(12)))cos((((2k+1)π)/(12))))/(2sin^2 ((((2k+1)π)/(12)))−2isin((((2k+1)π)/(12)))cos((((2k+1)π)/(12)))))  =(1/(tan((((2k+1)π)/(12))))) (e^(i(((2k+1)π)/(12))) /(−i e^((i(2k+1)π)/(13)) )) =icotan((((2k+1)π)/(12)))  ⇒ the roots are x_k =i cotan((((2k+1)π)/(12))) with  k∈{0,1,2,3,4,5}

8)(x+1)6+(x1)6=0(x1)6(x+1)6=1(x1x+1)6=1letx1x+1=zz6=1z6=ei(2k+1)πtherootsofthis(e)arezk=ei(2k+1)π6andk[[0,5]]therootsofthefirst(e)arexk/xk1xk+1=zkxk1=zkxk+zk(1zk)xk=1+zkxk=1+zk1zk=1+cos(2k+16π)+isin((2k+1)π6)1cos((2k+1)π6)isin((2k+1)π6)=2cos2((2k+1)π12)+2isin((2k+1)π12)cos((2k+1)π12)2sin2((2k+1)π12)2isin((2k+1)π12)cos((2k+1)π12)=1tan((2k+1)π12)ei(2k+1)π12iei(2k+1)π13=icotan((2k+1)π12)therootsarexk=icotan((2k+1)π12)withk{0,1,2,3,4,5}

Commented by Tawa1 last updated on 03/Jan/19

God bless you sir

Godblessyousir

Commented by Tawa1 last updated on 03/Jan/19

Sir, what of the deduction .  Thanks for your time

Sir,whatofthededuction.Thanksforyourtime

Commented by maxmathsup by imad last updated on 03/Jan/19

you are welcome sir.

youarewelcomesir.

Commented by maxmathsup by imad last updated on 03/Jan/19

we have S=tan^2 ((π/(12)))+tan^2 (((3π)/(12))) +tan^2 (((5π)/(12)))=tan^2 ((π/(12)))+tan^2 ((π/2) −(π/(12)))+1  =tan^2 ((π/(12))) +(1/(tan^2 ((π/(12))))) +1  but tan((π/(12)))=2−(√3)  ⇒  S=(2−(√3))^2  +(1/((2−(√3))^2 )) +1 =(2−(√3))^2  +(2+(√3))^2  +1 =7−4(√3)+7+4(√3) +1  =15 .

wehaveS=tan2(π12)+tan2(3π12)+tan2(5π12)=tan2(π12)+tan2(π2π12)+1=tan2(π12)+1tan2(π12)+1buttan(π12)=23S=(23)2+1(23)2+1=(23)2+(2+3)2+1=743+7+43+1=15.

Commented by maxmathsup by imad last updated on 03/Jan/19

cos^2 ((π/(12)))=((1+((√3)/2))/2) =((2+(√3))/4) ⇒cos((π/(12)))=((√(2+(√3)))/2)  sin((π/(12)))=((√(2−(√3)))/2) ⇒tan((π/(12)))=((√(2−(√3)))/(√(2+(√3)))) =(((√(2−(√3)))(√(2−(√3))))/(√(2^2 −3))) =2−(√3).

cos2(π12)=1+322=2+34cos(π12)=2+32sin(π12)=232tan(π12)=232+3=2323223=23.

Commented by Tawa1 last updated on 03/Jan/19

God bless you sir. i appreciate

Godblessyousir.iappreciate

Commented by Abdo msup. last updated on 13/Jan/19

most welcome.

mostwelcome.

Answered by tanmay.chaudhury50@gmail.com last updated on 02/Jan/19

7)x^9 −x^5 +x^4 −1=0  x^5 (x^4 −1)+1(x^4 −1)=0  (x^4 −1)(x^5 +1)=0  when x^4 −1=0  x^4 =1=cos2kπ+isin2kπ  x=cos(((2kπ)/4))+isin(((2kπ)/4))=cos(((kπ)/2))+isin(((kπ)/2))  put k=0,1,2,3  x^5 +1=0  x^5 =−1=cosπ+isinπ=cos(2kπ+π)+isin(2kπ+π)  x=cos(((2k+1)/5))π+isin(((2k+1)/5))π  put n=0,1,2,3,4

7)x9x5+x41=0x5(x41)+1(x41)=0(x41)(x5+1)=0whenx41=0x4=1=cos2kπ+isin2kπx=cos(2kπ4)+isin(2kπ4)=cos(kπ2)+isin(kπ2)putk=0,1,2,3x5+1=0x5=1=cosπ+isinπ=cos(2kπ+π)+isin(2kπ+π)x=cos(2k+15)π+isin(2k+15)πputn=0,1,2,3,4

Commented by Tawa1 last updated on 02/Jan/19

God bless you sir

Godblessyousir

Answered by tanmay.chaudhury50@gmail.com last updated on 02/Jan/19

8)(x+1)^6 +(x−1)^6 =0  (x^6 +6c_1 x^5 +6c_2 x^4 +6c_3 x^3 +6c_4 x^2 +6c_5 x+6c_6 )+  (x^6 −6c_1 x^5 +6c_2 x^4 −6c_3 x^3 +6c_4 x^2 −6c_5 x+6c_6 )=0  adding  2(x^6 +((6×5)/2)x^4 +((6×5)/2)x^2 +1)=0  x^6 +15x^4 +15x^2 +1=0  x^3 +15x+((15)/x)+(1/x^3 )=0  (x^3 +(1/x^3 ))+15(x+(1/x))=0  (x+(1/x))^3 −3(x+(1/x))+15(x+(1/x))=0  (x+(1/x))^3 +12(x+(1/x))=0  (x+(1/x))[(x+(1/x))^2 +12]=0  when x+(1/x)=0  x^2 +1=0  x^2 =−1=cosπ+isinπ=cos(2kπ+π)+isin(2kπ+π)  x=cos(((2k+1)/2))π+isin(((2k+1)/2))π  put k=0 and 1  x_1 =cos(π/2)+isin(π/2)=i  x_2 =cos(((3π)/2))+isin(((3π)/2))=−i  (x+(1/x))^2 +12=0  x^2 +2+(1/x^2 )+12=0  x^4 +14x^2 +1=0  x^2 =((−14±(√(196−4)))/2)=((−14±(√(192)))/2)=((−14±8(√3))/2)  x^2 =−7+4(√3) =−1(7−4(√3) )  x^2 =i^2 (2−(√3) )^2   x=±i(2−(√3) )  when x^2 =−7−4(√3) =−1(7+4(√3) )  x^2 =i^2 (2+(√3) )^2   x=±i(2+(√3) )  so roots are x→[ ±i ,±i(2−(√3) ),±i(2+(√3) )]  alternative way to solve....i am trying...

8)(x+1)6+(x1)6=0(x6+6c1x5+6c2x4+6c3x3+6c4x2+6c5x+6c6)+(x66c1x5+6c2x46c3x3+6c4x26c5x+6c6)=0adding2(x6+6×52x4+6×52x2+1)=0x6+15x4+15x2+1=0x3+15x+15x+1x3=0(x3+1x3)+15(x+1x)=0(x+1x)33(x+1x)+15(x+1x)=0(x+1x)3+12(x+1x)=0(x+1x)[(x+1x)2+12]=0whenx+1x=0x2+1=0x2=1=cosπ+isinπ=cos(2kπ+π)+isin(2kπ+π)x=cos(2k+12)π+isin(2k+12)πputk=0and1x1=cosπ2+isinπ2=ix2=cos(3π2)+isin(3π2)=i(x+1x)2+12=0x2+2+1x2+12=0x4+14x2+1=0x2=14±19642=14±1922=14±832x2=7+43=1(743)x2=i2(23)2x=±i(23)whenx2=743=1(7+43)x2=i2(2+3)2x=±i(2+3)sorootsarex[±i,±i(23),±i(2+3)]alternativewaytosolve....iamtrying...

Commented by Tawa1 last updated on 02/Jan/19

God bless you sir.  Thanks for your time sir. i appreciate

Godblessyousir.Thanksforyourtimesir.iappreciate

Answered by tanmay.chaudhury50@gmail.com last updated on 02/Jan/19

9)(x+1)^7 =(x−1)^7   (((x+1)^7 )/((x−1)^7 ))=1  (((x+1)/(x−1)))^7 =(1)  (((x+1)/(x−1)))^7 =cos(2kπ)+isin(2kπ)  ((x+1)/(x−1))=cos(((2kπ)/7))+isin(((2kπ)/7))=r  x+1=rx−r  x−rx=−r−1  rx−x=r+1  x=((r+1)/(r−1))=((cos(((2kπ)/7))+isin(((2kπ)/7))+1)/(cos(((2kπ)/7))+isin(((2kπ)/7))−1))  x=((2cos^2 (((kπ)/7))+i2sin(((kπ)/7))cos(((kπ)/7)))/(−2sin^2 (((kπ)/7))+i2sin(((kπ)/7))cos(((kπ)/7))))  x=cot(((kπ)/7))×((cos((kπ)/7)+isin((kπ)/7))/(icos((kπ)/7)−sin((kπ)/7)))  x=icot(((kπ)/7))×((cos((kπ)/7)+isin((ikπ)/7))/(−cos((kπ)/7)−isin((kπ)/7)))  x=−icot(((kπ)/7))×((cos((kπ)/7)+isin((kπ)/7))/(cos((kπ)/7)+isin(((kπ)/7))))  x=−icot(((kπ)/7))

9)(x+1)7=(x1)7(x+1)7(x1)7=1(x+1x1)7=(1)(x+1x1)7=cos(2kπ)+isin(2kπ)x+1x1=cos(2kπ7)+isin(2kπ7)=rx+1=rxrxrx=r1rxx=r+1x=r+1r1=cos(2kπ7)+isin(2kπ7)+1cos(2kπ7)+isin(2kπ7)1x=2cos2(kπ7)+i2sin(kπ7)cos(kπ7)2sin2(kπ7)+i2sin(kπ7)cos(kπ7)x=cot(kπ7)×coskπ7+isinkπ7icoskπ7sinkπ7x=icot(kπ7)×coskπ7+isinikπ7coskπ7isinkπ7x=icot(kπ7)×coskπ7+isinkπ7coskπ7+isin(kπ7)x=icot(kπ7)

Commented by Tawa1 last updated on 02/Jan/19

God bless you sir

Godblessyousir

Answered by tanmay.chaudhury50@gmail.com last updated on 03/Jan/19

8)alternative..  (x+1)^6 +(x−1)^6 =0  (((x+1)/(x−1)))^6 +1=0  (((x+1)/(x−1)))^6 =−1=cos(2kπ+π)+isin(2kπ+π)  (((x+1)/(x−1)))=cos(((2kπ+π)/6))+isin(((2kπ+π)/6))  ((x+1)/(x−1))=r  x+1=rx−r  x−rx=−r−1  rx−x=r+1  x=((r+1)/(r−1))=((1+(1/r))/(1−(1/r)))=((1+cos(((2kπ+π)/6))−isin(((2kπ+π)/6)))/(1−cos(((2kπ+π)/6))+isin(((2kπ+π)/6))))  x=((2cos^2 (((2kπ+π)/(12)))−2isin(((2kπ+π)/(12)))cos(((2kπ+π)/(12))))/(2sin^2 (((2kπ+π)/(12)))+2icos(((2kπ+π)/(12)))sin(((2kπ+π)/(12)))))  x=cot(((2kπ+π)/(12)))×((cos(((2kπ+π)/(12)))−isin(((2kπ+π)/(12))))/(sin(((2kπ+π)/(12)))+icos(((2kπ+π)/(12)))))  x=icot(((2kπ+π)/(12)))×((cos(((2kπ+π)/(12)))−isin(((2kπ+π)/(12))))/(−cos(((2kπ+π)/(12)))+isin(((2kπ+π)/(12)))))  x=−icot(((2kπ+π)/(12)))

8)alternative..(x+1)6+(x1)6=0(x+1x1)6+1=0(x+1x1)6=1=cos(2kπ+π)+isin(2kπ+π)(x+1x1)=cos(2kπ+π6)+isin(2kπ+π6)x+1x1=rx+1=rxrxrx=r1rxx=r+1x=r+1r1=1+1r11r=1+cos(2kπ+π6)isin(2kπ+π6)1cos(2kπ+π6)+isin(2kπ+π6)x=2cos2(2kπ+π12)2isin(2kπ+π12)cos(2kπ+π12)2sin2(2kπ+π12)+2icos(2kπ+π12)sin(2kπ+π12)x=cot(2kπ+π12)×cos(2kπ+π12)isin(2kπ+π12)sin(2kπ+π12)+icos(2kπ+π12)x=icot(2kπ+π12)×cos(2kπ+π12)isin(2kπ+π12)cos(2kπ+π12)+isin(2kπ+π12)x=icot(2kπ+π12)

Commented by Tawa1 last updated on 03/Jan/19

God bless you sir

Godblessyousir

Commented by Tawa1 last updated on 03/Jan/19

Sir, what of the deduction sir.  Thanks for your time sir.

Sir,whatofthedeductionsir.Thanksforyourtimesir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com