Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 52061 by ajfour last updated on 02/Jan/19

Commented by ajfour last updated on 02/Jan/19

Find minimum of (AP+PB) in  terms of α, a, b.

$${Find}\:{minimum}\:{of}\:\left({AP}+{PB}\right)\:{in} \\ $$$${terms}\:{of}\:\alpha,\:{a},\:{b}. \\ $$

Commented by MJS last updated on 14/Jan/19

I get (√(a^2 +b^2 −2abcos 2α))

$$\mathrm{I}\:\mathrm{get}\:\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\mathrm{cos}\:\mathrm{2}\alpha} \\ $$

Commented by mr W last updated on 15/Jan/19

please recheck your solution sir.  this result is not correct.    example: b=0  min. path is obviously 2a sin α.    according to your result it is a.     according to my result it is  (√(a^2 +a^2 −2a^2 cos 2α))=a(√(2(1−cos 2α)))  =a(√(2×2 sin^2  α))=2a sin α. that means  my result is correct.

$${please}\:{recheck}\:{your}\:{solution}\:{sir}. \\ $$$${this}\:{result}\:{is}\:{not}\:{correct}. \\ $$$$ \\ $$$${example}:\:{b}=\mathrm{0} \\ $$$${min}.\:{path}\:{is}\:{obviously}\:\mathrm{2}{a}\:\mathrm{sin}\:\alpha. \\ $$$$ \\ $$$${according}\:{to}\:{your}\:{result}\:{it}\:{is}\:{a}.\: \\ $$$$ \\ $$$${according}\:{to}\:{my}\:{result}\:{it}\:{is} \\ $$$$\sqrt{{a}^{\mathrm{2}} +{a}^{\mathrm{2}} −\mathrm{2}{a}^{\mathrm{2}} \mathrm{cos}\:\mathrm{2}\alpha}={a}\sqrt{\mathrm{2}\left(\mathrm{1}−\mathrm{cos}\:\mathrm{2}\alpha\right)} \\ $$$$={a}\sqrt{\mathrm{2}×\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \:\alpha}=\mathrm{2}{a}\:\mathrm{sin}\:\alpha.\:{that}\:{means} \\ $$$${my}\:{result}\:{is}\:{correct}. \\ $$

Answered by mr W last updated on 02/Jan/19

Commented by mr W last updated on 02/Jan/19

AP+PB=A′P+PB  (AP+PB)_(min) =A′B  =a^2 +(a+b)^2 −2a(a+b)cos (2α)

$${AP}+{PB}={A}'{P}+{PB} \\ $$$$\left({AP}+{PB}\right)_{{min}} ={A}'{B} \\ $$$$={a}^{\mathrm{2}} +\left({a}+{b}\right)^{\mathrm{2}} −\mathrm{2}{a}\left({a}+{b}\right)\mathrm{cos}\:\left(\mathrm{2}\alpha\right) \\ $$

Commented by ajfour last updated on 15/Jan/19

 you mean of course (A′B)^2  = ..

$$\:{you}\:{mean}\:{of}\:{course}\:\left({A}'{B}\right)^{\mathrm{2}} \:=\:..\:\:\:\: \\ $$

Commented by mr W last updated on 15/Jan/19

yes sir.

$${yes}\:{sir}. \\ $$

Answered by MJS last updated on 15/Jan/19

A= ((a),(0) )  B= (((a+b=c)),(0) )  P= ((p),((pt)) )  l(p)=∣AP∣+∣BP∣=(√((t^2 +1)p^2 −2ap+a^2 ))+(√((t^2 +1)p^2 −2cp+c^2 ))  l′(p)=0 ⇒ p=0 ∨ p=((2ac)/((a+c)(t^2 +1)))  maximum is at l(0)=a+c=2a+b  minimum is at l(((2ac)/((a+c)(t^2 +1))))=(√(((a+c)^2 t^2 +(a−c)^2 )/(t^2 +1)))=(√(((2a+b)^2 t^2 +b^2 )/(t^2 +1)))  t=tan α  (√(((2a+b)^2 t^2 +b^2 )/(t^2 +1)))=(√(b^2 +4a(a+b)sin^2  α))

$${A}=\begin{pmatrix}{{a}}\\{\mathrm{0}}\end{pmatrix}\:\:{B}=\begin{pmatrix}{{a}+{b}={c}}\\{\mathrm{0}}\end{pmatrix}\:\:{P}=\begin{pmatrix}{{p}}\\{{pt}}\end{pmatrix} \\ $$$${l}\left({p}\right)=\mid{AP}\mid+\mid{BP}\mid=\sqrt{\left({t}^{\mathrm{2}} +\mathrm{1}\right){p}^{\mathrm{2}} −\mathrm{2}{ap}+{a}^{\mathrm{2}} }+\sqrt{\left({t}^{\mathrm{2}} +\mathrm{1}\right){p}^{\mathrm{2}} −\mathrm{2}{cp}+{c}^{\mathrm{2}} } \\ $$$${l}'\left({p}\right)=\mathrm{0}\:\Rightarrow\:{p}=\mathrm{0}\:\vee\:{p}=\frac{\mathrm{2}{ac}}{\left({a}+{c}\right)\left({t}^{\mathrm{2}} +\mathrm{1}\right)} \\ $$$$\mathrm{maximum}\:\mathrm{is}\:\mathrm{at}\:{l}\left(\mathrm{0}\right)={a}+{c}=\mathrm{2}{a}+{b} \\ $$$$\mathrm{minimum}\:\mathrm{is}\:\mathrm{at}\:{l}\left(\frac{\mathrm{2}{ac}}{\left({a}+{c}\right)\left({t}^{\mathrm{2}} +\mathrm{1}\right)}\right)=\sqrt{\frac{\left({a}+{c}\right)^{\mathrm{2}} {t}^{\mathrm{2}} +\left({a}−{c}\right)^{\mathrm{2}} }{{t}^{\mathrm{2}} +\mathrm{1}}}=\sqrt{\frac{\left(\mathrm{2}{a}+{b}\right)^{\mathrm{2}} {t}^{\mathrm{2}} +{b}^{\mathrm{2}} }{{t}^{\mathrm{2}} +\mathrm{1}}} \\ $$$${t}=\mathrm{tan}\:\alpha \\ $$$$\sqrt{\frac{\left(\mathrm{2}{a}+{b}\right)^{\mathrm{2}} {t}^{\mathrm{2}} +{b}^{\mathrm{2}} }{{t}^{\mathrm{2}} +\mathrm{1}}}=\sqrt{{b}^{\mathrm{2}} +\mathrm{4}{a}\left({a}+{b}\right)\mathrm{sin}^{\mathrm{2}} \:\alpha} \\ $$

Commented by MJS last updated on 15/Jan/19

not sure what happened before. this is correct  and should be the same as your result

$$\mathrm{not}\:\mathrm{sure}\:\mathrm{what}\:\mathrm{happened}\:\mathrm{before}.\:\mathrm{this}\:\mathrm{is}\:\mathrm{correct} \\ $$$$\mathrm{and}\:\mathrm{should}\:\mathrm{be}\:\mathrm{the}\:\mathrm{same}\:\mathrm{as}\:\mathrm{your}\:\mathrm{result} \\ $$

Commented by ajfour last updated on 15/Jan/19

Thanks for the alternative way Sir.

$${Thanks}\:{for}\:{the}\:{alternative}\:{way}\:{Sir}. \\ $$

Commented by mr W last updated on 15/Jan/19

it′s perfect sir!  this is a real mathematical solution  while my solution is a “physical” one  based on “knowledge” that the straight  is the shortest path between two points.

$${it}'{s}\:{perfect}\:{sir}! \\ $$$${this}\:{is}\:{a}\:{real}\:{mathematical}\:{solution} \\ $$$${while}\:{my}\:{solution}\:{is}\:{a}\:``{physical}''\:{one} \\ $$$${based}\:{on}\:``{knowledge}''\:{that}\:{the}\:{straight} \\ $$$${is}\:{the}\:{shortest}\:{path}\:{between}\:{two}\:{points}. \\ $$

Commented by mr W last updated on 15/Jan/19

but anyway, a maximum doesn′t exit.

$${but}\:{anyway},\:{a}\:{maximum}\:{doesn}'{t}\:{exit}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com