Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 52079 by jojosehrawat21@gmail.com last updated on 03/Jan/19

Sum to the n terms of the series whose n^(th )  term is 2^(n−1 )  + 8n^3  −6n^2

Sumtothentermsoftheserieswhosenthtermis2n1+8n36n2

Commented by maxmathsup by imad last updated on 03/Jan/19

let U_n =2^(n−1)  +8n^3 −6n^2   with U_1 =3 ⇒  Σ_(k=1) ^n  U_k =Σ_(k=1) ^n  2^(k−1)  +8Σ_(k=1) ^n k^3  −6 Σ_(k=1) ^n  k^2   =Σ_(k=0) ^(n−1)  2^k  +8((n^2 (n+1)^2 )/4) −6 ((n(n+1)(2n+1))/6)  =((1−2^n )/(1−2)) +2n^2 (n+1)^2  −n(n+1)(2n+1)  =2^n −1 +n(n+1){2n(n+1)−2n−1}  =2^n −1 +(n^2 +n){2n^2 −1}  =2^n −1 +2n^4 −n^2  +2n^3 −n  Σ_(k=1) ^n  U_k =2^n  +2n^4  +2n^3  −n^2 −n−1 .

letUn=2n1+8n36n2withU1=3k=1nUk=k=1n2k1+8k=1nk36k=1nk2=k=0n12k+8n2(n+1)246n(n+1)(2n+1)6=12n12+2n2(n+1)2n(n+1)(2n+1)=2n1+n(n+1){2n(n+1)2n1}=2n1+(n2+n){2n21}=2n1+2n4n2+2n3nk=1nUk=2n+2n4+2n3n2n1.

Answered by tanmay.chaudhury50@gmail.com last updated on 03/Jan/19

T_n =2^(n−1) +8n^3 −6n^2   S=S_1 +S_2 −S_3   S_1 =((a(r^n −1))/(r−1))=((1(2^n −1))/(2−1))=2^n −1  S_2 =8×[((n(n+1))/2)]^2 =2n^2 (n+1)^2   S_3 =6×((n(n+1)(2n+1))/6)=n(n+1)(2n+1)  S=2^(n−1) +n(n+1)(2n^2 +2n−2n−1)  S=2^(n−1) +n(n+1)(2n^2 −1)

Tn=2n1+8n36n2S=S1+S2S3S1=a(rn1)r1=1(2n1)21=2n1S2=8×[n(n+1)2]2=2n2(n+1)2S3=6×n(n+1)(2n+1)6=n(n+1)(2n+1)S=2n1+n(n+1)(2n2+2n2n1)S=2n1+n(n+1)(2n21)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com