Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 52129 by ajfour last updated on 03/Jan/19

Commented by ajfour last updated on 03/Jan/19

Find radius r of circles (the same)  in terms of square side a.

$${Find}\:{radius}\:\boldsymbol{{r}}\:{of}\:{circles}\:\left({the}\:{same}\right) \\ $$$${in}\:{terms}\:{of}\:{square}\:{side}\:\boldsymbol{{a}}. \\ $$

Commented by ajfour last updated on 03/Jan/19

r(√2)+r+b = a(√2)    ....(i)  AP^2 = b^2 +(r+r(√2))^2    ...(ii)  also    AP = (a−r)+(a−r−CP)  ⇒   AP = a−r+a−r−(√2)(r+r(√2))          AP  = 2a−r(4+(√2))    ...(iii)  ⇒   [2a−r(4+(√2))]^2 =[a(√2)−r(1+(√2))]^2                                                      +(r+r(√2))^2   ⇒ 4a^2 −4ar(4+(√2))+(18+8(√2))r^2         = 2a^2 −2ar(2+(√2))+(6+4(√2))r^2   ⇒ 2a^2 −ar(12+2(√2))+(12+4(√2))r^2 = 0  ⇒  (6+2(√2))r^2 −(6+(√2))ar+a^2  = 0   let  (r/a) = λ  ⇒  (6+2(√2))λ^2 −(6+(√2))λ+1 = 0  λ ≈ 0.1688a    (& 0.671a  not acceptable).

$${r}\sqrt{\mathrm{2}}+{r}+{b}\:=\:{a}\sqrt{\mathrm{2}}\:\:\:\:....\left({i}\right) \\ $$$${AP}\:^{\mathrm{2}} =\:{b}^{\mathrm{2}} +\left({r}+{r}\sqrt{\mathrm{2}}\right)^{\mathrm{2}} \:\:\:...\left({ii}\right) \\ $$$${also}\:\:\:\:{AP}\:=\:\left({a}−{r}\right)+\left({a}−{r}−{CP}\right) \\ $$$$\Rightarrow\:\:\:{AP}\:=\:{a}−{r}+{a}−{r}−\sqrt{\mathrm{2}}\left({r}+{r}\sqrt{\mathrm{2}}\right) \\ $$$$\:\:\:\:\:\:\:\:{AP}\:\:=\:\mathrm{2}{a}−{r}\left(\mathrm{4}+\sqrt{\mathrm{2}}\right)\:\:\:\:...\left({iii}\right) \\ $$$$\Rightarrow\:\:\:\left[\mathrm{2}{a}−{r}\left(\mathrm{4}+\sqrt{\mathrm{2}}\right)\right]^{\mathrm{2}} =\left[{a}\sqrt{\mathrm{2}}−{r}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)\right]^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\left({r}+{r}\sqrt{\mathrm{2}}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\:\mathrm{4}{a}^{\mathrm{2}} −\mathrm{4}{ar}\left(\mathrm{4}+\sqrt{\mathrm{2}}\right)+\left(\mathrm{18}+\mathrm{8}\sqrt{\mathrm{2}}\right){r}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:=\:\mathrm{2}{a}^{\mathrm{2}} −\mathrm{2}{ar}\left(\mathrm{2}+\sqrt{\mathrm{2}}\right)+\left(\mathrm{6}+\mathrm{4}\sqrt{\mathrm{2}}\right){r}^{\mathrm{2}} \\ $$$$\Rightarrow\:\mathrm{2}{a}^{\mathrm{2}} −{ar}\left(\mathrm{12}+\mathrm{2}\sqrt{\mathrm{2}}\right)+\left(\mathrm{12}+\mathrm{4}\sqrt{\mathrm{2}}\right){r}^{\mathrm{2}} =\:\mathrm{0} \\ $$$$\Rightarrow\:\:\left(\mathrm{6}+\mathrm{2}\sqrt{\mathrm{2}}\right){r}^{\mathrm{2}} −\left(\mathrm{6}+\sqrt{\mathrm{2}}\right){ar}+{a}^{\mathrm{2}} \:=\:\mathrm{0} \\ $$$$\:{let}\:\:\frac{{r}}{{a}}\:=\:\lambda \\ $$$$\Rightarrow\:\:\left(\mathrm{6}+\mathrm{2}\sqrt{\mathrm{2}}\right)\lambda^{\mathrm{2}} −\left(\mathrm{6}+\sqrt{\mathrm{2}}\right)\lambda+\mathrm{1}\:=\:\mathrm{0} \\ $$$$\lambda\:\approx\:\mathrm{0}.\mathrm{1688}{a}\:\:\:\:\left(\&\:\mathrm{0}.\mathrm{671}{a}\:\:{not}\:{acceptable}\right). \\ $$

Commented by ajfour last updated on 03/Jan/19

Commented by mr W last updated on 03/Jan/19

good solution!

$${good}\:{solution}! \\ $$

Commented by Olalekan99 last updated on 04/Jan/19

pls wat app   did u use for the drawing

$${pls}\:{wat}\:{app}\: \\ $$$${did}\:{u}\:{use}\:{for}\:{the}\:{drawing} \\ $$

Answered by mr W last updated on 03/Jan/19

((ax)/2)=(r/2)(a+x+(√(a^2 +x^2 )))  ⇒r=((ax)/((a+x+(√(a^2 +x^2 )))))     ...(i)  (((a−x)^2 )/2)=(r/2)[2(a−x)+(√2)(a−x)]  ⇒r=((a−x)/(2+(√2)))     ...(ii)  ((ax)/((a+x+(√(a^2 +x^2 )))))=((a−x)/(2+(√2)))  let λ=(x/a)  (λ/((1+λ+(√(1+λ^2 )))))=((1−λ)/(2+(√2)))  λ^2 +(2+(√2))λ−1=(1−λ)(√(1+λ^2 ))  ⇒(3+(√2))λ^2 +(1+2(√2))λ−(1+(√2))=0  λ=(((√((1+2(√2))^2 +4(3+(√2))(1+(√2))))−(1+2(√2)))/(2(3+(√2))))  λ=(((√(79+46(√2)))−5(√2)+1)/(14))≈0.4237  ⇒(r/a)=((1−λ)/(2+(√2)))=(1/(2+(√2)))(((13+5(√2)−(√(79+46(√2))))/(14)))  ⇒(r/a)=((16−3(√2)−(√(2(53−20(√2)))))/(28))≈0.1688

$$\frac{{ax}}{\mathrm{2}}=\frac{{r}}{\mathrm{2}}\left({a}+{x}+\sqrt{{a}^{\mathrm{2}} +{x}^{\mathrm{2}} }\right) \\ $$$$\Rightarrow{r}=\frac{{ax}}{\left({a}+{x}+\sqrt{{a}^{\mathrm{2}} +{x}^{\mathrm{2}} }\right)}\:\:\:\:\:...\left({i}\right) \\ $$$$\frac{\left({a}−{x}\right)^{\mathrm{2}} }{\mathrm{2}}=\frac{{r}}{\mathrm{2}}\left[\mathrm{2}\left({a}−{x}\right)+\sqrt{\mathrm{2}}\left({a}−{x}\right)\right] \\ $$$$\Rightarrow{r}=\frac{{a}−{x}}{\mathrm{2}+\sqrt{\mathrm{2}}}\:\:\:\:\:...\left({ii}\right) \\ $$$$\frac{{ax}}{\left({a}+{x}+\sqrt{{a}^{\mathrm{2}} +{x}^{\mathrm{2}} }\right)}=\frac{{a}−{x}}{\mathrm{2}+\sqrt{\mathrm{2}}} \\ $$$${let}\:\lambda=\frac{{x}}{{a}} \\ $$$$\frac{\lambda}{\left(\mathrm{1}+\lambda+\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} }\right)}=\frac{\mathrm{1}−\lambda}{\mathrm{2}+\sqrt{\mathrm{2}}} \\ $$$$\lambda^{\mathrm{2}} +\left(\mathrm{2}+\sqrt{\mathrm{2}}\right)\lambda−\mathrm{1}=\left(\mathrm{1}−\lambda\right)\sqrt{\mathrm{1}+\lambda^{\mathrm{2}} } \\ $$$$\Rightarrow\left(\mathrm{3}+\sqrt{\mathrm{2}}\right)\lambda^{\mathrm{2}} +\left(\mathrm{1}+\mathrm{2}\sqrt{\mathrm{2}}\right)\lambda−\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)=\mathrm{0} \\ $$$$\lambda=\frac{\sqrt{\left(\mathrm{1}+\mathrm{2}\sqrt{\mathrm{2}}\right)^{\mathrm{2}} +\mathrm{4}\left(\mathrm{3}+\sqrt{\mathrm{2}}\right)\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)}−\left(\mathrm{1}+\mathrm{2}\sqrt{\mathrm{2}}\right)}{\mathrm{2}\left(\mathrm{3}+\sqrt{\mathrm{2}}\right)} \\ $$$$\lambda=\frac{\sqrt{\mathrm{79}+\mathrm{46}\sqrt{\mathrm{2}}}−\mathrm{5}\sqrt{\mathrm{2}}+\mathrm{1}}{\mathrm{14}}\approx\mathrm{0}.\mathrm{4237} \\ $$$$\Rightarrow\frac{{r}}{{a}}=\frac{\mathrm{1}−\lambda}{\mathrm{2}+\sqrt{\mathrm{2}}}=\frac{\mathrm{1}}{\mathrm{2}+\sqrt{\mathrm{2}}}\left(\frac{\mathrm{13}+\mathrm{5}\sqrt{\mathrm{2}}−\sqrt{\mathrm{79}+\mathrm{46}\sqrt{\mathrm{2}}}}{\mathrm{14}}\right) \\ $$$$\Rightarrow\frac{{r}}{{a}}=\frac{\mathrm{16}−\mathrm{3}\sqrt{\mathrm{2}}−\sqrt{\mathrm{2}\left(\mathrm{53}−\mathrm{20}\sqrt{\mathrm{2}}\right)}}{\mathrm{28}}\approx\mathrm{0}.\mathrm{1688} \\ $$

Commented by ajfour last updated on 03/Jan/19

Thank you Sir! (got the same finally)   and whats x in your solution.

$${Thank}\:{you}\:{Sir}!\:\left({got}\:{the}\:{same}\:{finally}\right) \\ $$$$\:{and}\:{whats}\:{x}\:{in}\:{your}\:{solution}. \\ $$

Commented by mr W last updated on 03/Jan/19

x is BP in your diagram.

$${x}\:{is}\:{BP}\:{in}\:{your}\:{diagram}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com