Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 52223 by Tawa1 last updated on 04/Jan/19

Commented by tanmay.chaudhury50@gmail.com last updated on 05/Jan/19

Commented by Tawa1 last updated on 05/Jan/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Answered by mr W last updated on 05/Jan/19

Commented by Tawa1 last updated on 05/Jan/19

God bless you sir. I appreciate your time.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{appreciate}\:\mathrm{your}\:\mathrm{time}.\: \\ $$

Commented by mr W last updated on 05/Jan/19

r=2  R=3  AB=a  DC=R−r=3−2=1  AB=2r sin θ=a  DE=r−r cos θ=r(1−cos θ)  EC=DE+DC=r(1−cos θ)+R−r=((√3)/2)a   ⇒r(1−cos θ)+R−r=((√3)/2)×2r sin θ  ⇒2(1−cos θ)+1=2(√3) sin θ  ⇒(√3) sin θ+cos θ=(3/2)  ⇒((√3)/2) sin θ+(1/2)cos θ=(3/4)  ⇒cos (π/6) sin θ+sin (π/6)cos θ=(3/4)  ⇒sin (θ+(π/6))=(3/4)  ⇒θ+(π/6)=sin^(−1) (3/4) or π−sin^(−1) (3/4)  ⇒θ=sin^(−1) (3/4)−(π/6) (≈18.59°) or  ⇒θ=((5π)/6)−sin^(−1) (3/4) (≈101.41°)  i.e. two equilateral triangles are possible.    a=2r sin θ=4 sin θ  sin θ=sin (sin^(−1) (3/4)−(π/6))=(3/4)×((√3)/2)−((√7)/4)×(1/2)=((3(√3)−(√7))/8)  sin θ=sin (((5π)/6)−sin^(−1) (3/4))=sin ((π/6)+sin^(−1) (3/4))=(3/4)×((√3)/2)+((√7)/4)×(1/2)=((3(√3)+(√7))/8)  ⇒a=((3(√3)−(√7))/2) (≈1.275) or  ⇒a=((3(√3)+(√7))/2) (≈3.921)  product of possible side lengthes is  P=((3(√3)−(√7))/2)×((3(√3)+(√7))/2)=((9×3−7)/4)=5    ⇒the answer is 5.

$${r}=\mathrm{2} \\ $$$${R}=\mathrm{3} \\ $$$${AB}={a} \\ $$$${DC}={R}−{r}=\mathrm{3}−\mathrm{2}=\mathrm{1} \\ $$$${AB}=\mathrm{2}{r}\:\mathrm{sin}\:\theta={a} \\ $$$${DE}={r}−{r}\:\mathrm{cos}\:\theta={r}\left(\mathrm{1}−\mathrm{cos}\:\theta\right) \\ $$$${EC}={DE}+{DC}={r}\left(\mathrm{1}−\mathrm{cos}\:\theta\right)+{R}−{r}=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{a}\: \\ $$$$\Rightarrow{r}\left(\mathrm{1}−\mathrm{cos}\:\theta\right)+{R}−{r}=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}×\mathrm{2}{r}\:\mathrm{sin}\:\theta \\ $$$$\Rightarrow\mathrm{2}\left(\mathrm{1}−\mathrm{cos}\:\theta\right)+\mathrm{1}=\mathrm{2}\sqrt{\mathrm{3}}\:\mathrm{sin}\:\theta \\ $$$$\Rightarrow\sqrt{\mathrm{3}}\:\mathrm{sin}\:\theta+\mathrm{cos}\:\theta=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\Rightarrow\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:\mathrm{sin}\:\theta+\frac{\mathrm{1}}{\mathrm{2}}\mathrm{cos}\:\theta=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\Rightarrow\mathrm{cos}\:\frac{\pi}{\mathrm{6}}\:\mathrm{sin}\:\theta+\mathrm{sin}\:\frac{\pi}{\mathrm{6}}\mathrm{cos}\:\theta=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\Rightarrow\mathrm{sin}\:\left(\theta+\frac{\pi}{\mathrm{6}}\right)=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\Rightarrow\theta+\frac{\pi}{\mathrm{6}}=\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{3}}{\mathrm{4}}\:{or}\:\pi−\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{3}}{\mathrm{4}} \\ $$$$\Rightarrow\theta=\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{3}}{\mathrm{4}}−\frac{\pi}{\mathrm{6}}\:\left(\approx\mathrm{18}.\mathrm{59}°\right)\:{or} \\ $$$$\Rightarrow\theta=\frac{\mathrm{5}\pi}{\mathrm{6}}−\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{3}}{\mathrm{4}}\:\left(\approx\mathrm{101}.\mathrm{41}°\right) \\ $$$${i}.{e}.\:{two}\:{equilateral}\:{triangles}\:{are}\:{possible}. \\ $$$$ \\ $$$${a}=\mathrm{2}{r}\:\mathrm{sin}\:\theta=\mathrm{4}\:\mathrm{sin}\:\theta \\ $$$$\mathrm{sin}\:\theta=\mathrm{sin}\:\left(\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{3}}{\mathrm{4}}−\frac{\pi}{\mathrm{6}}\right)=\frac{\mathrm{3}}{\mathrm{4}}×\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}−\frac{\sqrt{\mathrm{7}}}{\mathrm{4}}×\frac{\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{3}\sqrt{\mathrm{3}}−\sqrt{\mathrm{7}}}{\mathrm{8}} \\ $$$$\mathrm{sin}\:\theta=\mathrm{sin}\:\left(\frac{\mathrm{5}\pi}{\mathrm{6}}−\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{3}}{\mathrm{4}}\right)=\mathrm{sin}\:\left(\frac{\pi}{\mathrm{6}}+\mathrm{sin}^{−\mathrm{1}} \frac{\mathrm{3}}{\mathrm{4}}\right)=\frac{\mathrm{3}}{\mathrm{4}}×\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}+\frac{\sqrt{\mathrm{7}}}{\mathrm{4}}×\frac{\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{3}\sqrt{\mathrm{3}}+\sqrt{\mathrm{7}}}{\mathrm{8}} \\ $$$$\Rightarrow{a}=\frac{\mathrm{3}\sqrt{\mathrm{3}}−\sqrt{\mathrm{7}}}{\mathrm{2}}\:\left(\approx\mathrm{1}.\mathrm{275}\right)\:{or} \\ $$$$\Rightarrow{a}=\frac{\mathrm{3}\sqrt{\mathrm{3}}+\sqrt{\mathrm{7}}}{\mathrm{2}}\:\left(\approx\mathrm{3}.\mathrm{921}\right) \\ $$$${product}\:{of}\:{possible}\:{side}\:{lengthes}\:{is} \\ $$$${P}=\frac{\mathrm{3}\sqrt{\mathrm{3}}−\sqrt{\mathrm{7}}}{\mathrm{2}}×\frac{\mathrm{3}\sqrt{\mathrm{3}}+\sqrt{\mathrm{7}}}{\mathrm{2}}=\frac{\mathrm{9}×\mathrm{3}−\mathrm{7}}{\mathrm{4}}=\mathrm{5} \\ $$$$ \\ $$$$\Rightarrow{the}\:{answer}\:{is}\:\mathrm{5}. \\ $$

Commented by mr W last updated on 05/Jan/19

alternative way:  AB=a  OE=(√(r^2 −(a^2 /4)))  CE=R−(√(r^2 −(a^2 /4)))=(((√3)a)/2)  3−(√(4−(a^2 /4)))=(((√3)a)/2)  (√(16−a^2 ))=6−(√3)a  16−a^2 =36−12(√3)a+3a^2   ⇒a^2 −3(√3)a+5=0  there are two solutions for a. the  sum of both solutions is 3(√3) and the  product of both solutions is 5.    ⇒answer is 5.

$${alternative}\:{way}: \\ $$$${AB}={a} \\ $$$${OE}=\sqrt{{r}^{\mathrm{2}} −\frac{{a}^{\mathrm{2}} }{\mathrm{4}}} \\ $$$${CE}={R}−\sqrt{{r}^{\mathrm{2}} −\frac{{a}^{\mathrm{2}} }{\mathrm{4}}}=\frac{\sqrt{\mathrm{3}}{a}}{\mathrm{2}} \\ $$$$\mathrm{3}−\sqrt{\mathrm{4}−\frac{{a}^{\mathrm{2}} }{\mathrm{4}}}=\frac{\sqrt{\mathrm{3}}{a}}{\mathrm{2}} \\ $$$$\sqrt{\mathrm{16}−{a}^{\mathrm{2}} }=\mathrm{6}−\sqrt{\mathrm{3}}{a} \\ $$$$\mathrm{16}−{a}^{\mathrm{2}} =\mathrm{36}−\mathrm{12}\sqrt{\mathrm{3}}{a}+\mathrm{3}{a}^{\mathrm{2}} \\ $$$$\Rightarrow{a}^{\mathrm{2}} −\mathrm{3}\sqrt{\mathrm{3}}{a}+\mathrm{5}=\mathrm{0} \\ $$$${there}\:{are}\:{two}\:{solutions}\:{for}\:{a}.\:{the} \\ $$$${sum}\:{of}\:{both}\:{solutions}\:{is}\:\mathrm{3}\sqrt{\mathrm{3}}\:{and}\:{the} \\ $$$${product}\:{of}\:{both}\:{solutions}\:{is}\:\mathrm{5}. \\ $$$$ \\ $$$$\Rightarrow{answer}\:{is}\:\mathrm{5}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com