Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 52312 by ajfour last updated on 06/Jan/19

Commented by ajfour last updated on 06/Jan/19

If lengths of strings l and L are  such that shown geometry results,  find tension in both strings.

$${If}\:{lengths}\:{of}\:{strings}\:{l}\:{and}\:{L}\:{are} \\ $$$${such}\:{that}\:{shown}\:{geometry}\:{results}, \\ $$$${find}\:{tension}\:{in}\:{both}\:{strings}. \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 06/Jan/19

Commented by tanmay.chaudhury50@gmail.com last updated on 06/Jan/19

mg=T_R sinθ_1 +T_B sinθ_2   T_R cosθ_1 =T_B cosθ_2   Mg=T_(R ) sin_ θ_3 +T_B sinθ_4   T_R cosθ_3 =T_B cosθ_4   need time and direction to reach goal...so wait  pls...

$${mg}={T}_{{R}} {sin}\theta_{\mathrm{1}} +{T}_{{B}} {sin}\theta_{\mathrm{2}} \\ $$$${T}_{{R}} {cos}\theta_{\mathrm{1}} ={T}_{{B}} {cos}\theta_{\mathrm{2}} \\ $$$${Mg}={T}_{{R}\:} {sin}_{} \theta_{\mathrm{3}} +{T}_{{B}} {sin}\theta_{\mathrm{4}} \\ $$$${T}_{{R}} {cos}\theta_{\mathrm{3}} ={T}_{{B}} {cos}\theta_{\mathrm{4}} \\ $$$${need}\:{time}\:{and}\:{direction}\:{to}\:{reach}\:{goal}...{so}\:{wait} \\ $$$${pls}... \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Answered by mr W last updated on 06/Jan/19

Commented by mr W last updated on 06/Jan/19

let μ=(m/M), λ=(L/b), κ=(l/b)    T_1 sin α−T_2 sin δ=0  T_1 cos α+T_2 cos δ=Mg  ⇒T_1 =((Mg sin δ)/(sin (α+δ)))  ⇒T_2 =((Mg sin α)/(sin (α+δ)))    T_1 sin β+T_2 (sin δ−sin γ)=0  T_1 cos β+T_2 (cos γ−cos δ)=mg  ⇒T_1 =((mg (sin γ−sin δ))/(sin (β+γ)−sin (β+δ)))  ⇒T_2 =((mg sin β)/(sin (β+γ)−sin (β+δ)))    ⇒((Mg sin δ)/(sin (α+δ)))=((mg (sin γ−sin δ))/(sin (β+γ)−sin (β+δ)))  ⇒((sin δ)/(sin (α+δ)))=((μ (sin γ−sin δ))/(sin (β+γ)−sin (β+δ)))   ...(i)  ⇒((Mg sin α)/(sin (α+δ)))=((mg sin β)/(sin (β+γ)−sin (β+δ)))  ⇒((sin α)/(sin (α+δ)))=((μ sin β)/(sin (β+γ)−sin (β+δ)))   ...(ii)    ((OR)/(cos β))=((OP)/(cos γ))=(b/(sin (β+γ)))  ⇒OR=((cos β b)/(sin (β+γ)))  ⇒OP=((cos γ b)/(sin (β+γ)))    ∠OPQ=(π/2)−α−((π/2)−β)=β−α  ((OQ)/(sin (β−α)))=((OP)/(sin (α+δ)))=((PQ)/(sin (δ+β)))  ⇒OQ=((sin (β−α)×OP)/(sin (α+δ)))=((sin (β−α) cos γ b)/(sin (α+δ) sin (β+γ)))  ⇒PQ=((sin (δ+β)×OP)/(sin (α+δ)))=((sin (δ+β) cos γ b)/(sin (α+δ) sin (β+γ)))    OP+PQ=L  ((cos γ b)/(sin (β+γ)))+((sin (δ+β) cos γ b)/(sin (α+δ) sin (β+γ)))=L  ⇒((cos γ)/(sin (β+γ)))[1+((sin (δ+β))/(sin (α+δ)))]=λ   ...(iii)  OR+OQ=l  ((cos β b)/(sin (β+γ)))+((sin (β−α) cos γ b)/(sin (α+δ) sin (β+γ)))=l  ⇒(1/(sin (β+γ)))[cos β+((sin (β−α) cos γ)/(sin (α+δ)))]=κ   ...(iv)    4 eqn. for 4 unknowns: α,β,γ,δ  ......

$${let}\:\mu=\frac{{m}}{{M}},\:\lambda=\frac{{L}}{{b}},\:\kappa=\frac{{l}}{{b}} \\ $$$$ \\ $$$${T}_{\mathrm{1}} \mathrm{sin}\:\alpha−{T}_{\mathrm{2}} \mathrm{sin}\:\delta=\mathrm{0} \\ $$$${T}_{\mathrm{1}} \mathrm{cos}\:\alpha+{T}_{\mathrm{2}} \mathrm{cos}\:\delta={Mg} \\ $$$$\Rightarrow{T}_{\mathrm{1}} =\frac{{Mg}\:\mathrm{sin}\:\delta}{\mathrm{sin}\:\left(\alpha+\delta\right)} \\ $$$$\Rightarrow{T}_{\mathrm{2}} =\frac{{Mg}\:\mathrm{sin}\:\alpha}{\mathrm{sin}\:\left(\alpha+\delta\right)} \\ $$$$ \\ $$$${T}_{\mathrm{1}} \mathrm{sin}\:\beta+{T}_{\mathrm{2}} \left(\mathrm{sin}\:\delta−\mathrm{sin}\:\gamma\right)=\mathrm{0} \\ $$$${T}_{\mathrm{1}} \mathrm{cos}\:\beta+{T}_{\mathrm{2}} \left(\mathrm{cos}\:\gamma−\mathrm{cos}\:\delta\right)={mg} \\ $$$$\Rightarrow{T}_{\mathrm{1}} =\frac{{mg}\:\left(\mathrm{sin}\:\gamma−\mathrm{sin}\:\delta\right)}{\mathrm{sin}\:\left(\beta+\gamma\right)−\mathrm{sin}\:\left(\beta+\delta\right)} \\ $$$$\Rightarrow{T}_{\mathrm{2}} =\frac{{mg}\:\mathrm{sin}\:\beta}{\mathrm{sin}\:\left(\beta+\gamma\right)−\mathrm{sin}\:\left(\beta+\delta\right)} \\ $$$$ \\ $$$$\Rightarrow\frac{{Mg}\:\mathrm{sin}\:\delta}{\mathrm{sin}\:\left(\alpha+\delta\right)}=\frac{{mg}\:\left(\mathrm{sin}\:\gamma−\mathrm{sin}\:\delta\right)}{\mathrm{sin}\:\left(\beta+\gamma\right)−\mathrm{sin}\:\left(\beta+\delta\right)} \\ $$$$\Rightarrow\frac{\mathrm{sin}\:\delta}{\mathrm{sin}\:\left(\alpha+\delta\right)}=\frac{\mu\:\left(\mathrm{sin}\:\gamma−\mathrm{sin}\:\delta\right)}{\mathrm{sin}\:\left(\beta+\gamma\right)−\mathrm{sin}\:\left(\beta+\delta\right)}\:\:\:...\left({i}\right) \\ $$$$\Rightarrow\frac{{Mg}\:\mathrm{sin}\:\alpha}{\mathrm{sin}\:\left(\alpha+\delta\right)}=\frac{{mg}\:\mathrm{sin}\:\beta}{\mathrm{sin}\:\left(\beta+\gamma\right)−\mathrm{sin}\:\left(\beta+\delta\right)} \\ $$$$\Rightarrow\frac{\mathrm{sin}\:\alpha}{\mathrm{sin}\:\left(\alpha+\delta\right)}=\frac{\mu\:\mathrm{sin}\:\beta}{\mathrm{sin}\:\left(\beta+\gamma\right)−\mathrm{sin}\:\left(\beta+\delta\right)}\:\:\:...\left({ii}\right) \\ $$$$ \\ $$$$\frac{{OR}}{\mathrm{cos}\:\beta}=\frac{{OP}}{\mathrm{cos}\:\gamma}=\frac{{b}}{\mathrm{sin}\:\left(\beta+\gamma\right)} \\ $$$$\Rightarrow{OR}=\frac{\mathrm{cos}\:\beta\:{b}}{\mathrm{sin}\:\left(\beta+\gamma\right)} \\ $$$$\Rightarrow{OP}=\frac{\mathrm{cos}\:\gamma\:{b}}{\mathrm{sin}\:\left(\beta+\gamma\right)} \\ $$$$ \\ $$$$\angle{OPQ}=\frac{\pi}{\mathrm{2}}−\alpha−\left(\frac{\pi}{\mathrm{2}}−\beta\right)=\beta−\alpha \\ $$$$\frac{{OQ}}{\mathrm{sin}\:\left(\beta−\alpha\right)}=\frac{{OP}}{\mathrm{sin}\:\left(\alpha+\delta\right)}=\frac{{PQ}}{\mathrm{sin}\:\left(\delta+\beta\right)} \\ $$$$\Rightarrow{OQ}=\frac{\mathrm{sin}\:\left(\beta−\alpha\right)×{OP}}{\mathrm{sin}\:\left(\alpha+\delta\right)}=\frac{\mathrm{sin}\:\left(\beta−\alpha\right)\:\mathrm{cos}\:\gamma\:{b}}{\mathrm{sin}\:\left(\alpha+\delta\right)\:\mathrm{sin}\:\left(\beta+\gamma\right)} \\ $$$$\Rightarrow{PQ}=\frac{\mathrm{sin}\:\left(\delta+\beta\right)×{OP}}{\mathrm{sin}\:\left(\alpha+\delta\right)}=\frac{\mathrm{sin}\:\left(\delta+\beta\right)\:\mathrm{cos}\:\gamma\:{b}}{\mathrm{sin}\:\left(\alpha+\delta\right)\:\mathrm{sin}\:\left(\beta+\gamma\right)} \\ $$$$ \\ $$$${OP}+{PQ}={L} \\ $$$$\frac{\mathrm{cos}\:\gamma\:{b}}{\mathrm{sin}\:\left(\beta+\gamma\right)}+\frac{\mathrm{sin}\:\left(\delta+\beta\right)\:\mathrm{cos}\:\gamma\:{b}}{\mathrm{sin}\:\left(\alpha+\delta\right)\:\mathrm{sin}\:\left(\beta+\gamma\right)}={L} \\ $$$$\Rightarrow\frac{\mathrm{cos}\:\gamma}{\mathrm{sin}\:\left(\beta+\gamma\right)}\left[\mathrm{1}+\frac{\mathrm{sin}\:\left(\delta+\beta\right)}{\mathrm{sin}\:\left(\alpha+\delta\right)}\right]=\lambda\:\:\:...\left({iii}\right) \\ $$$${OR}+{OQ}={l} \\ $$$$\frac{\mathrm{cos}\:\beta\:{b}}{\mathrm{sin}\:\left(\beta+\gamma\right)}+\frac{\mathrm{sin}\:\left(\beta−\alpha\right)\:\mathrm{cos}\:\gamma\:{b}}{\mathrm{sin}\:\left(\alpha+\delta\right)\:\mathrm{sin}\:\left(\beta+\gamma\right)}={l} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{sin}\:\left(\beta+\gamma\right)}\left[\mathrm{cos}\:\beta+\frac{\mathrm{sin}\:\left(\beta−\alpha\right)\:\mathrm{cos}\:\gamma}{\mathrm{sin}\:\left(\alpha+\delta\right)}\right]=\kappa\:\:\:...\left({iv}\right) \\ $$$$ \\ $$$$\mathrm{4}\:{eqn}.\:{for}\:\mathrm{4}\:{unknowns}:\:\alpha,\beta,\gamma,\delta \\ $$$$...... \\ $$

Commented by ajfour last updated on 06/Jan/19

Thank you Sir, i could go no further  too, the angles are intricately  related, dont even permit us to reduce  them to two eqs. in two unknowns!

$${Thank}\:{you}\:{Sir},\:{i}\:{could}\:{go}\:{no}\:{further} \\ $$$${too},\:{the}\:{angles}\:{are}\:{intricately} \\ $$$${related},\:{dont}\:{even}\:{permit}\:{us}\:{to}\:{reduce} \\ $$$${them}\:{to}\:{two}\:{eqs}.\:{in}\:{two}\:{unknowns}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com