Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 5232 by sanusihammed last updated on 02/May/16

If f(x) = ((x^2 −4)/(x−2))          x→2    α = 3 . Σ = 0.1   find   δ    Alpha = 3   Epsalum = 0.1 Find delta

Iff(x)=x24x2x2α=3.Σ=0.1findδAlpha=3Epsalum=0.1Finddelta

Commented by FilupSmith last updated on 02/May/16

What is the definition of δ?

Whatisthedefinitionofδ?

Answered by Yozzii last updated on 02/May/16

According to the ε−δ definition of  the limit, the limit lim_(x→a) f(x)=α  exists if,for any ε>0 there is a δ>0,  such that   ∣f(x)−α∣<ε  whenever  0<∣x−a∣<δ.  So using f(x)=((x^2 −4)/(x−2)) and α=4    {not 3 since lim_(x→2) f(x)=lim_(x→2) (((x+2)(x−2))/(x−2))=lim_(x→2) (x+2)=2+2=4≠3.}  ⇒∣((x^2 −4)/(x−2))−4∣=∣((x^2 −4−4x+8)/(x−2))∣  =∣((x^2 −4x+4)/(x−2))∣=∣(((x−2)^2 )/(x−2))∣  =∣x−2∣  Since ∣f(x)−4∣<ε and ∣f(x)−4∣=∣x−2∣  ⇒∣x−2∣<ε⇒ let ε=δ. Hence, if  ε=0.1, δ=0.1.

Accordingtotheϵδdefinitionofthelimit,thelimitlimxaf(x)=αexistsif,foranyϵ>0thereisaδ>0,suchthatf(x)α∣<ϵwhenever0<∣xa∣<δ.Sousingf(x)=x24x2andα=4{not3sincelimx2f(x)=limx2(x+2)(x2)x2=limx2(x+2)=2+2=43.}⇒∣x24x24∣=∣x244x+8x2=∣x24x+4x2∣=∣(x2)2x2=∣x2Sincef(x)4∣<ϵandf(x)4∣=∣x2⇒∣x2∣<ϵletϵ=δ.Hence,ifϵ=0.1,δ=0.1.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com