Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 52360 by ajfour last updated on 06/Jan/19

Commented by ajfour last updated on 06/Jan/19

If θ_(max) = 150° and θ_(min) = 75°  , find  a and b in terms of radius R.

$${If}\:\theta_{{max}} =\:\mathrm{150}°\:{and}\:\theta_{{min}} =\:\mathrm{75}°\:\:,\:{find} \\ $$$${a}\:{and}\:{b}\:{in}\:{terms}\:{of}\:{radius}\:{R}. \\ $$

Answered by mr W last updated on 06/Jan/19

Commented by ajfour last updated on 06/Jan/19

how come the perpendicular  bisector Sir? for certain?!

$${how}\:{come}\:{the}\:{perpendicular} \\ $$$${bisector}\:{Sir}?\:{for}\:{certain}?! \\ $$

Commented by mr W last updated on 06/Jan/19

let MP=h, AM=MB=d  (d/h)=tan (θ_(max) /2)=m  ⇒d=mh  (d/(h+2R))=tan (θ_(min) /2)=n  ⇒d=n(h+2R)  ⇒mh=n(h+2R)  ⇒h=((2nR)/(m−n))  ⇒d=((2mnR)/(m−n))  a=(√(d^2 +(h+R)^2 ))=(√((((2mnR)/(m−n)))^2 +(((2nR)/(m−n))+R)^2 ))  ⇒a=((√(4m^2 n^2 +(m+n)^2 ))/(m−n))×R  (b/(2d))=((h+R)/a)  b=((2d(h+R))/a)=((2×2mn)/(√(4m^2 n^2 +(m+n)^2 )))(((2n)/(m−n))+1)×R  ⇒b=((4mn(m+n))/((m−n)(√(4m^2 n^2 +(m+n)^2 ))))×R  with θ_(max) =150°, θ_(min) =75°  m=tan ((150°)/2)=tan 75°=(√3)+2  n=tan ((75°)/2)  m=((2n)/(1−n^2 ))  mn^2 +2n−m=0  n=(((√(1+m^2 ))−1)/m)=2((√(2−(√3)))−1)+(√3)  m+n=2((√3)+(√(2−(√3))))  m−n=2(2−(√(2−(√3))))  mn=2(√(2+(√3)))−1  ...

$${let}\:{MP}={h},\:{AM}={MB}={d} \\ $$$$\frac{{d}}{{h}}=\mathrm{tan}\:\frac{\theta_{{max}} }{\mathrm{2}}={m} \\ $$$$\Rightarrow{d}={mh} \\ $$$$\frac{{d}}{{h}+\mathrm{2}{R}}=\mathrm{tan}\:\frac{\theta_{{min}} }{\mathrm{2}}={n} \\ $$$$\Rightarrow{d}={n}\left({h}+\mathrm{2}{R}\right) \\ $$$$\Rightarrow{mh}={n}\left({h}+\mathrm{2}{R}\right) \\ $$$$\Rightarrow{h}=\frac{\mathrm{2}{nR}}{{m}−{n}} \\ $$$$\Rightarrow{d}=\frac{\mathrm{2}{mnR}}{{m}−{n}} \\ $$$${a}=\sqrt{{d}^{\mathrm{2}} +\left({h}+{R}\right)^{\mathrm{2}} }=\sqrt{\left(\frac{\mathrm{2}{mnR}}{{m}−{n}}\right)^{\mathrm{2}} +\left(\frac{\mathrm{2}{nR}}{{m}−{n}}+{R}\right)^{\mathrm{2}} } \\ $$$$\Rightarrow{a}=\frac{\sqrt{\mathrm{4}{m}^{\mathrm{2}} {n}^{\mathrm{2}} +\left({m}+{n}\right)^{\mathrm{2}} }}{{m}−{n}}×{R} \\ $$$$\frac{{b}}{\mathrm{2}{d}}=\frac{{h}+{R}}{{a}} \\ $$$${b}=\frac{\mathrm{2}{d}\left({h}+{R}\right)}{{a}}=\frac{\mathrm{2}×\mathrm{2}{mn}}{\sqrt{\mathrm{4}{m}^{\mathrm{2}} {n}^{\mathrm{2}} +\left({m}+{n}\right)^{\mathrm{2}} }}\left(\frac{\mathrm{2}{n}}{{m}−{n}}+\mathrm{1}\right)×{R} \\ $$$$\Rightarrow{b}=\frac{\mathrm{4}{mn}\left({m}+{n}\right)}{\left({m}−{n}\right)\sqrt{\mathrm{4}{m}^{\mathrm{2}} {n}^{\mathrm{2}} +\left({m}+{n}\right)^{\mathrm{2}} }}×{R} \\ $$$${with}\:\theta_{{max}} =\mathrm{150}°,\:\theta_{{min}} =\mathrm{75}° \\ $$$${m}=\mathrm{tan}\:\frac{\mathrm{150}°}{\mathrm{2}}=\mathrm{tan}\:\mathrm{75}°=\sqrt{\mathrm{3}}+\mathrm{2} \\ $$$${n}=\mathrm{tan}\:\frac{\mathrm{75}°}{\mathrm{2}} \\ $$$${m}=\frac{\mathrm{2}{n}}{\mathrm{1}−{n}^{\mathrm{2}} } \\ $$$${mn}^{\mathrm{2}} +\mathrm{2}{n}−{m}=\mathrm{0} \\ $$$${n}=\frac{\sqrt{\mathrm{1}+{m}^{\mathrm{2}} }−\mathrm{1}}{{m}}=\mathrm{2}\left(\sqrt{\mathrm{2}−\sqrt{\mathrm{3}}}−\mathrm{1}\right)+\sqrt{\mathrm{3}} \\ $$$${m}+{n}=\mathrm{2}\left(\sqrt{\mathrm{3}}+\sqrt{\mathrm{2}−\sqrt{\mathrm{3}}}\right) \\ $$$${m}−{n}=\mathrm{2}\left(\mathrm{2}−\sqrt{\mathrm{2}−\sqrt{\mathrm{3}}}\right) \\ $$$${mn}=\mathrm{2}\sqrt{\mathrm{2}+\sqrt{\mathrm{3}}}−\mathrm{1} \\ $$$$... \\ $$

Commented by mr W last updated on 06/Jan/19

for θ=constant, the locus of point P  is a circle through points A and B.  AB is a chord of this circle. such that  θ_(max)  happens, this circle must tangent  the circle with radius R.

$${for}\:\theta={constant},\:{the}\:{locus}\:{of}\:{point}\:{P} \\ $$$${is}\:{a}\:{circle}\:{through}\:{points}\:{A}\:{and}\:{B}. \\ $$$${AB}\:{is}\:{a}\:{chord}\:{of}\:{this}\:{circle}.\:{such}\:{that} \\ $$$$\theta_{{max}} \:{happens},\:{this}\:{circle}\:{must}\:{tangent} \\ $$$${the}\:{circle}\:{with}\:{radius}\:{R}. \\ $$

Commented by mr W last updated on 06/Jan/19

Commented by ajfour last updated on 06/Jan/19

fine Sir, let me check with b=0,  in a couple of minutes, please..

$${fine}\:{Sir},\:{let}\:{me}\:{check}\:{with}\:{b}=\mathrm{0}, \\ $$$${in}\:{a}\:{couple}\:{of}\:{minutes},\:{please}.. \\ $$

Commented by mr W last updated on 06/Jan/19

i think i made a mistake. it is correct  that the circle through AB should  tangent the circle with radius R, but  AB is not always centric to the circle  with radius R. but i have assumed  they are centric to each other.

$${i}\:{think}\:{i}\:{made}\:{a}\:{mistake}.\:{it}\:{is}\:{correct} \\ $$$${that}\:{the}\:{circle}\:{through}\:{AB}\:{should} \\ $$$${tangent}\:{the}\:{circle}\:{with}\:{radius}\:{R},\:{but} \\ $$$${AB}\:{is}\:{not}\:{always}\:{centric}\:{to}\:{the}\:{circle} \\ $$$${with}\:{radius}\:{R}.\:{but}\:{i}\:{have}\:{assumed} \\ $$$${they}\:{are}\:{centric}\:{to}\:{each}\:{other}. \\ $$

Commented by mr W last updated on 06/Jan/19

i want to say, my solution is correct,   but there are also other possibilities.

$${i}\:{want}\:{to}\:{say},\:{my}\:{solution}\:{is}\:{correct},\: \\ $$$${but}\:{there}\:{are}\:{also}\:{other}\:{possibilities}. \\ $$

Commented by mr W last updated on 06/Jan/19

since both a and b are to be determined,  it is ok to assume that AB is centric to  the circle and we get the solution as  i did. but if one of a and b is fixed, then it  is wrong to assume that AB is centric  to the circle.

$${since}\:{both}\:{a}\:{and}\:{b}\:{are}\:{to}\:{be}\:{determined}, \\ $$$${it}\:{is}\:{ok}\:{to}\:{assume}\:{that}\:{AB}\:{is}\:{centric}\:{to} \\ $$$${the}\:{circle}\:{and}\:{we}\:{get}\:{the}\:{solution}\:{as} \\ $$$${i}\:{did}.\:{but}\:{if}\:{one}\:{of}\:{a}\:{and}\:{b}\:{is}\:{fixed},\:{then}\:{it} \\ $$$${is}\:{wrong}\:{to}\:{assume}\:{that}\:{AB}\:{is}\:{centric} \\ $$$${to}\:{the}\:{circle}. \\ $$

Commented by ajfour last updated on 06/Jan/19

yes Sir, i tried to agree but my  sketching did not let me agree totally  about the perpendicular bisector  line you drew, not generally.

$${yes}\:{Sir},\:{i}\:{tried}\:{to}\:{agree}\:{but}\:{my} \\ $$$${sketching}\:{did}\:{not}\:{let}\:{me}\:{agree}\:{totally} \\ $$$${about}\:{the}\:{perpendicular}\:{bisector} \\ $$$${line}\:{you}\:{drew},\:{not}\:{generally}. \\ $$

Commented by mr W last updated on 07/Jan/19

the situation is following:  when a and b are given, we get unique  θ_(max)  and θ_(min) .  but when θ_(max)  and θ_(min)  are given, we  can not get unique a and b. the solution  i gave is a correct solution, but not the  only solution.

$${the}\:{situation}\:{is}\:{following}: \\ $$$${when}\:{a}\:{and}\:{b}\:{are}\:{given},\:{we}\:{get}\:{unique} \\ $$$$\theta_{{max}} \:{and}\:\theta_{{min}} . \\ $$$${but}\:{when}\:\theta_{{max}} \:{and}\:\theta_{{min}} \:{are}\:{given},\:{we} \\ $$$${can}\:{not}\:{get}\:{unique}\:{a}\:{and}\:{b}.\:{the}\:{solution} \\ $$$${i}\:{gave}\:{is}\:{a}\:{correct}\:{solution},\:{but}\:{not}\:{the} \\ $$$${only}\:{solution}. \\ $$

Commented by ajfour last updated on 07/Jan/19

oh yes, Sir.Thank you so much!  dint occur to me, without your words.

$${oh}\:{yes},\:{Sir}.{Thank}\:{you}\:{so}\:{much}! \\ $$$${dint}\:{occur}\:{to}\:{me},\:{without}\:{your}\:{words}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com