All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 52418 by Abdo msup. last updated on 07/Jan/19
findthevalueof∫0∞arctan(x)1+x4dx
Commented by maxmathsup by imad last updated on 08/Jan/19
letf(t)=∫0∞arctan(tx)1+x4dx⇒f′(t)=∫0∞x(1+x2t2)(1+x4)dx=xt=u∫0∞ut(1+u2)(1+u4t4)dut=∫0∞u(1+u2)(t2+u4t2)du=t2∫0∞u(u2+1)(u4+t4)duletdecomposeF(u)=u(u2+1)(u4+t4)F(u)=u(u2+1)((u2+t2)2−2u2t2)=u(u2+1)(u2+t2−2tu)(u2+t2+2tu)=au+bu2+1+cu+du2−2tu+t2+eu+fu2+2tu+t2F(−u)=−F(u)⇒−au+bu2+1+−cu+du2+2tu+t2+−eu+fu2−2tu+t2=−au−bu2+1+−cu−du2−2tu+t2+−eu−fu2+2tu+t2⇒b=0andc=eandf=−d⇒F(u)=auu2+1+cu+du2−2tu+t2+cu−du2+2tu+t2limu→+∞uF(u)=0=a+2c⇒c=−a2⇒F(u)=auu2+1−12au−2du2−2tu+t2−12au+2du2+2tu+t2F(1)=12(1+t4)=a2−12a−2d1+t2−2t−12a+2d1+t2+2tF(−1)=−12(1+t4)−12a−2d1+t2+2t−12−a+2d1+t2−2t....becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com