Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 52418 by Abdo msup. last updated on 07/Jan/19

find the value of ∫_0 ^∞   ((arctan(x))/(1+x^4 )) dx

findthevalueof0arctan(x)1+x4dx

Commented by maxmathsup by imad last updated on 08/Jan/19

let f(t)=∫_0 ^∞   ((arctan(tx))/(1+x^4 ))dx  ⇒f^′ (t)=∫_0 ^∞   (x/((1+x^2 t^2 )(1+x^4 )))dx  =_(xt=u)   ∫_0 ^∞      (u/(t(1+u^2 )(1+(u^4 /t^4 )))) (du/t) =∫_0 ^∞    (u/((1+u^2 )(t^2  +(u^4 /t^2 ))))du  =t^2  ∫_0 ^∞     (u/((u^2 +1)(u^4 +t^4 )))du   let decompose F(u)=(u/((u^2  +1)(u^4  +t^4 )))  F(u) =(u/((u^2  +1)((u^2 +t^2 )^2 −2u^2 t^2 ))) =(u/((u^2  +1)(u^2 +t^2 −(√2)tu)(u^2  +t^2  +(√2)tu)))  =((au +b)/(u^2  +1)) +((cu+d)/(u^2 −(√2)tu +t^2 )) +((eu +f)/(u^2  +(√2)tu +t^2 ))  F(−u)=−F(u)⇒((−au+b)/(u^2  +1)) +((−cu+d)/(u^2 +(√2)tu +t^2 )) +((−eu +f)/(u^2 −(√2)tu +t^2 ))  =((−au−b)/(u^2  +1)) +((−cu−d)/(u^2 −(√2)tu +t^2 )) +((−eu −f)/(u^2  +(√2)tu +t^2 )) ⇒  b=0 and  c=e   and f=−d ⇒  F(u)=((au)/(u^2  +1)) +((cu+d)/(u^2 −(√2)tu +t^2 )) +((cu−d)/(u^2 +(√2)tu +t^2 ))  lim_(u→+∞) uF(u)=0 =a +2c ⇒c=−(a/2) ⇒  F(u)=((au)/(u^2  +1)) −(1/2)  ((au−2d)/(u^2 −(√2)tu +t^2 )) −(1/2) ((au+2d)/(u^2 +(√2)tu +t^2 ))  F(1) =(1/(2(1+t^4 ))) =(a/2) −(1/2) ((a−2d)/(1+t^2 −(√2)t)) −(1/2) ((a+2d)/(1+t^2 +(√2)t))  F(−1) =((−1)/(2(1+t^4 ))) −(1/2) ((a−2d)/(1+t^2 +(√2)t)) −(1/2) ((−a+2d)/(1+t^2 −(√2)t))  ....be continued...

letf(t)=0arctan(tx)1+x4dxf(t)=0x(1+x2t2)(1+x4)dx=xt=u0ut(1+u2)(1+u4t4)dut=0u(1+u2)(t2+u4t2)du=t20u(u2+1)(u4+t4)duletdecomposeF(u)=u(u2+1)(u4+t4)F(u)=u(u2+1)((u2+t2)22u2t2)=u(u2+1)(u2+t22tu)(u2+t2+2tu)=au+bu2+1+cu+du22tu+t2+eu+fu2+2tu+t2F(u)=F(u)au+bu2+1+cu+du2+2tu+t2+eu+fu22tu+t2=aubu2+1+cudu22tu+t2+eufu2+2tu+t2b=0andc=eandf=dF(u)=auu2+1+cu+du22tu+t2+cudu2+2tu+t2limu+uF(u)=0=a+2cc=a2F(u)=auu2+112au2du22tu+t212au+2du2+2tu+t2F(1)=12(1+t4)=a212a2d1+t22t12a+2d1+t2+2tF(1)=12(1+t4)12a2d1+t2+2t12a+2d1+t22t....becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com