Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 52459 by Abdo msup. last updated on 08/Jan/19

let f(α)=∫_0 ^1  ((ln(1+iαx))/(1+x^2 ))dx  1)determine a explicit form of f(α)  2) calculate ∫_0 ^1  ((ln(1+ix))/(1+x^2 ))dx and ∫_0 ^1  ((ln(1+2ix))/(1+x^2 ))dx.

letf(α)=01ln(1+iαx)1+x2dx1)determineaexplicitformoff(α)2)calculate01ln(1+ix)1+x2dxand01ln(1+2ix)1+x2dx.

Commented by maxmathsup by imad last updated on 08/Jan/19

1) we have f^′ (α) =∫_0 ^1   ((ix)/((1+iαx)(1+x^2 )))dx  so for α≠0   f^′ (α)=(1/α) ∫_0 ^1   ((1+iαx−1)/((1+iαx)(x^2  +1)))dx =(1/α) −(1/α) ∫_0 ^1  (dx/((iαx+1)(x^2  +1)))dx let  decompose F(x)=(1/((iαx+1)(x^2  +1))) ⇒  F(x)=(a/(iαx+1)) +((bx+c)/(x^2  +1))  a=lim_(x→((−1)/(iα)))    (iαx+1)F(x) = (1/((((1/(iα )))^2  +1))) =(1/((1/(−α^2 ))+1)) =−(1/(1−α^2 )) α^2  =(α^2 /(α^2 −1))  lim_(x→+∞ )   xF(x)=0 =(a/(iα)) +b ⇒b=−(a/(iα)) =((ia)/α) ⇒  F(x)=(α^2 /(α^2 −1)) (1/(iαx+1)) +((((ia)/α)x+c)/(x^2  +1))  (we suppose α≠+^− 1)  F(o)=1 =(α^2 /(α^2 −1)) +c ⇒c=1−(α^2 /(α^2 −1)) =((−1)/(α^2 −1)) ⇒  F(x) =(α^2 /((α^2 −1)(1+iαx))) +(((i/α)(α^2 /(α^2 −1))x−(1/(α^2 −1)))/(x^2  +1))  =(α^2 /((α^2 −1)(1+iαx)))  +(1/(α^2 −1)) ((iαx−1)/(x^2  +1)) ⇒  f^′ (α)=(1/α) −(1/α) ∫_0 ^1   (α^2 /((α^2 −1)(1+iαx))) dx−(1/(α(α^2 −1))) ∫_0 ^1   ((iαx −1)/(x^2  +1))dx  =(1/α) −(α/(α^2 −1))(1/(iα)) ∫_0 ^1    ((iαdx)/(1+iαx)) dx −(i/(2(α^2 −1)))[ln(x^2  +1)]_0 ^1   +(π/(4α(α^2 −1)))  =(1/α) +(i/(α^2 −1))ln(1+iα) −((iln(2))/(2(α^2 −1))) +(π/(4α(α^2 −1))) ⇒  f(α) =ln∣α∣ +i ∫  ((ln(1+iα))/(α^2 −1))dα +i((ln(2))/2) ∫ (dα/(α^2 −1)) +(π/4) ∫   (dα/(α(α^2 −1))) +c but  ∫   (dα/(α^2 −1)) =(1/2) ∫ ((1/(α−1)) −(1/(α+1)))dα =(1/2)ln∣((α−1)/(α+1))∣ let decompose  w(α)=(1/(α(α^2 −1))) =(1/(α(α−1)(α+1)))  w(α)=(a/α) +(b/(α−1)) +(c/(α+1)) ⇒a =−1  b=(1/2)  and  c=(1/2) ⇒w(α)=−(1/α) +(1/(2(α−1))) +(1/(2(α+1))) ⇒  ∫ (dα/(α(α^2 −1))) =−ln∣α∣ +(1/2)ln∣α^2 −1∣ ⇒  f(α)=i ∫  ((ln(1+iα))/(α^2 −1))dα +((iln(2))/4)ln∣((α−1)/(α+1))∣+ (1−(π/4))ln∣α∣+(π/8)ln∣α^2 −1∣ +c

1)wehavef(α)=01ix(1+iαx)(1+x2)dxsoforα0f(α)=1α011+iαx1(1+iαx)(x2+1)dx=1α1α01dx(iαx+1)(x2+1)dxletdecomposeF(x)=1(iαx+1)(x2+1)F(x)=aiαx+1+bx+cx2+1a=limx1iα(iαx+1)F(x)=1((1iα)2+1)=11α2+1=11α2α2=α2α21limx+xF(x)=0=aiα+bb=aiα=iaαF(x)=α2α211iαx+1+iaαx+cx2+1(wesupposeα+1)F(o)=1=α2α21+cc=1α2α21=1α21F(x)=α2(α21)(1+iαx)+iαα2α21x1α21x2+1=α2(α21)(1+iαx)+1α21iαx1x2+1f(α)=1α1α01α2(α21)(1+iαx)dx1α(α21)01iαx1x2+1dx=1ααα211iα01iαdx1+iαxdxi2(α21)[ln(x2+1)]01+π4α(α21)=1α+iα21ln(1+iα)iln(2)2(α21)+π4α(α21)f(α)=lnα+iln(1+iα)α21dα+iln(2)2dαα21+π4dαα(α21)+cbutdαα21=12(1α11α+1)dα=12lnα1α+1letdecomposew(α)=1α(α21)=1α(α1)(α+1)w(α)=aα+bα1+cα+1a=1b=12andc=12w(α)=1α+12(α1)+12(α+1)dαα(α21)=lnα+12lnα21f(α)=iln(1+iα)α21dα+iln(2)4lnα1α+1+(1π4)lnα+π8lnα21+c

Commented by Abdo msup. last updated on 08/Jan/19

2) we have 1+ix=(√(1+x^2 ))((1/(√(1+x^2 ))) +i(x/(√(1+x^2 ))))=r e^(iθ)  ⇒  r=(√(1+x^2 )) and θ=arctanx ⇒  ln(1+ix)=(1/2)ln(1+x^2 )+iarctanx ⇒  ∫_0 ^1   ((ln(1+ix))/(1+x^2 )) =(1/2) ∫_0 ^1   ((ln(1+x^2 ))/(1+x^2 )) dx +i∫_0 ^1   ((arctanx)/(1+x^2 ))dx  by parts I=∫_0 ^1   ((arctanx)/(1+x^2 ))dx=[arctan^2 x]_0 ^1   −∫_0 ^1  ((arctanx)/(1+x^2 )) =(π^2 /(16)) −I ⇒2I=(π^2 /(16)) ⇒I=(π^2 /(32))  let find ∫_0 ^1 ((ln(1+x^2 ))/(1+x^2 ))  dx let   f(t)=∫_0 ^1   ((ln(1+tx^2 ))/(1+x^2 )) dx with t>0 we have  f^′ (t) = ∫_0 ^1    (x^2 /((1+tx^2 )(1+x^2 )))dx  =_((√t)x=u)      ∫_0 ^(√t)       (u^2 /(t(1+u^2 )(1+(u^2 /t)))) (du/(√t))  =(1/(√t)) ∫_0 ^(√t)      (u^2 /((u^2 +1)(u^2  +t))) du  let decompose  F(u) =(u^2 /((u^2  +1)(u^2  +t))) ⇒  F(u)=((au +b)/(u^2  +1)) +((cu+d)/(u^2  +t))  F(−u)=F(u) ⇒((−au+b)/(u^2  +1)) +((−cu +d)/(u^2  +t))  =F(u) ⇒a=0 and c=0 ⇒  F(u)=(b/(u^2  +1)) +(d/(u^2  +t))  we see that   F(u)=(1/(t−1))((1/(u^2  +1))−(1/(u^2  +t)))  ⇒  ∫_0 ^(√t)  F(u)du =(1/(t−1)) ∫_0 ^(√t)   (du/(u^2  +1)) −(1/(t−1)) ∫_0 ^(√t)   (du/(u^2  +t))  but ∫_0 ^(√t)   (du/(1+u^2 )) =arctan((√t))  ∫_0 ^(√t)   (du/(u^2  +t)) =_(u=(√t)α)     ∫_0 ^1    (((√t)dα)/(t(1+α^2 ))) =(1/(√t))(π/4) ⇒  f^′ (t)=(1/(√t)){((arctan((√t)))/(t−1)) −(π/(4(√t)(t−1)))} ⇒  f(t) =∫   ((arctan((√t)))/((√t)(t−1)))dy −(π/4) ∫  (dt/(t(t−1))) +C  ∫   (dt/(t(t−1))) =∫ ((1/(t−1)) −(1/t))dt=ln∣((t−1)/t)∣ +c_1   ∫  ((arctan((√t)))/((√t)(t−1)))dt =_((√t)=u)    ∫    ((arctan(u))/(u(u^2 −1))) (2u)du  =2 ∫  ((arctan(u))/(u^2 −1)) du ....be continued...

2)wehave1+ix=1+x2(11+x2+ix1+x2)=reiθr=1+x2andθ=arctanxln(1+ix)=12ln(1+x2)+iarctanx01ln(1+ix)1+x2=1201ln(1+x2)1+x2dx+i01arctanx1+x2dxbypartsI=01arctanx1+x2dx=[arctan2x]0101arctanx1+x2=π216I2I=π216I=π232letfind01ln(1+x2)1+x2dxletf(t)=01ln(1+tx2)1+x2dxwitht>0wehavef(t)=01x2(1+tx2)(1+x2)dx=tx=u0tu2t(1+u2)(1+u2t)dut=1t0tu2(u2+1)(u2+t)duletdecomposeF(u)=u2(u2+1)(u2+t)F(u)=au+bu2+1+cu+du2+tF(u)=F(u)au+bu2+1+cu+du2+t=F(u)a=0andc=0F(u)=bu2+1+du2+tweseethatF(u)=1t1(1u2+11u2+t)0tF(u)du=1t10tduu2+11t10tduu2+tbut0tdu1+u2=arctan(t)0tduu2+t=u=tα01tdαt(1+α2)=1tπ4f(t)=1t{arctan(t)t1π4t(t1)}f(t)=arctan(t)t(t1)dyπ4dtt(t1)+Cdtt(t1)=(1t11t)dt=lnt1t+c1arctan(t)t(t1)dt=t=uarctan(u)u(u21)(2u)du=2arctan(u)u21du....becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com