All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 52459 by Abdo msup. last updated on 08/Jan/19
letf(α)=∫01ln(1+iαx)1+x2dx1)determineaexplicitformoff(α)2)calculate∫01ln(1+ix)1+x2dxand∫01ln(1+2ix)1+x2dx.
Commented by maxmathsup by imad last updated on 08/Jan/19
1)wehavef′(α)=∫01ix(1+iαx)(1+x2)dxsoforα≠0f′(α)=1α∫011+iαx−1(1+iαx)(x2+1)dx=1α−1α∫01dx(iαx+1)(x2+1)dxletdecomposeF(x)=1(iαx+1)(x2+1)⇒F(x)=aiαx+1+bx+cx2+1a=limx→−1iα(iαx+1)F(x)=1((1iα)2+1)=11−α2+1=−11−α2α2=α2α2−1limx→+∞xF(x)=0=aiα+b⇒b=−aiα=iaα⇒F(x)=α2α2−11iαx+1+iaαx+cx2+1(wesupposeα≠+−1)F(o)=1=α2α2−1+c⇒c=1−α2α2−1=−1α2−1⇒F(x)=α2(α2−1)(1+iαx)+iαα2α2−1x−1α2−1x2+1=α2(α2−1)(1+iαx)+1α2−1iαx−1x2+1⇒f′(α)=1α−1α∫01α2(α2−1)(1+iαx)dx−1α(α2−1)∫01iαx−1x2+1dx=1α−αα2−11iα∫01iαdx1+iαxdx−i2(α2−1)[ln(x2+1)]01+π4α(α2−1)=1α+iα2−1ln(1+iα)−iln(2)2(α2−1)+π4α(α2−1)⇒f(α)=ln∣α∣+i∫ln(1+iα)α2−1dα+iln(2)2∫dαα2−1+π4∫dαα(α2−1)+cbut∫dαα2−1=12∫(1α−1−1α+1)dα=12ln∣α−1α+1∣letdecomposew(α)=1α(α2−1)=1α(α−1)(α+1)w(α)=aα+bα−1+cα+1⇒a=−1b=12andc=12⇒w(α)=−1α+12(α−1)+12(α+1)⇒∫dαα(α2−1)=−ln∣α∣+12ln∣α2−1∣⇒f(α)=i∫ln(1+iα)α2−1dα+iln(2)4ln∣α−1α+1∣+(1−π4)ln∣α∣+π8ln∣α2−1∣+c
Commented by Abdo msup. last updated on 08/Jan/19
2)wehave1+ix=1+x2(11+x2+ix1+x2)=reiθ⇒r=1+x2andθ=arctanx⇒ln(1+ix)=12ln(1+x2)+iarctanx⇒∫01ln(1+ix)1+x2=12∫01ln(1+x2)1+x2dx+i∫01arctanx1+x2dxbypartsI=∫01arctanx1+x2dx=[arctan2x]01−∫01arctanx1+x2=π216−I⇒2I=π216⇒I=π232letfind∫01ln(1+x2)1+x2dxletf(t)=∫01ln(1+tx2)1+x2dxwitht>0wehavef′(t)=∫01x2(1+tx2)(1+x2)dx=tx=u∫0tu2t(1+u2)(1+u2t)dut=1t∫0tu2(u2+1)(u2+t)duletdecomposeF(u)=u2(u2+1)(u2+t)⇒F(u)=au+bu2+1+cu+du2+tF(−u)=F(u)⇒−au+bu2+1+−cu+du2+t=F(u)⇒a=0andc=0⇒F(u)=bu2+1+du2+tweseethatF(u)=1t−1(1u2+1−1u2+t)⇒∫0tF(u)du=1t−1∫0tduu2+1−1t−1∫0tduu2+tbut∫0tdu1+u2=arctan(t)∫0tduu2+t=u=tα∫01tdαt(1+α2)=1tπ4⇒f′(t)=1t{arctan(t)t−1−π4t(t−1)}⇒f(t)=∫arctan(t)t(t−1)dy−π4∫dtt(t−1)+C∫dtt(t−1)=∫(1t−1−1t)dt=ln∣t−1t∣+c1∫arctan(t)t(t−1)dt=t=u∫arctan(u)u(u2−1)(2u)du=2∫arctan(u)u2−1du....becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com