Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 52482 by maxmathsup by imad last updated on 08/Jan/19

find the value or ∫_0 ^∞    ((arctan(x^2 ))/(1+x^4 ))dx .

findthevalueor0arctan(x2)1+x4dx.

Commented by Abdo msup. last updated on 09/Jan/19

let f(t)=∫_0 ^∞   ((arctan(tx^2 ))/(1+x^4 ))dx with t>0 we have  f^′ (t)= ∫_0 ^∞   (x^2 /((1+t^2 x^4 )(1+x^4 )))dx ⇒  2f^′ (x)=∫_(−∞) ^(+∞)   (x^2 /((1+t^2 x^4 )(1+x^4 )))dx let consider the  complex function ϕ(z)=(z^2 /((t^2 z^4  +1)(z^4 +1)))  poles of ϕ?  we have  ϕ(z)=(z^2 /((tz^2 −i)(tz^2 +i)(z^2 −i)(z^2 +i)))  =(z^2 /(((√t)z−e^((iπ)/4) )((√t)z+e^((iπ)/4) )((√t)z−e^(−((iπ)/4)) )((√t)z +e^(−((iπ)/4)) )(z−e^((iπ)/4) )(z+e^((iπ)/4) )(z−e^(−((iπ)/4)) )(z+e^(−((iπ)/4)) )))  =(z^2 /(t^2 (z−(1/(√t))e^((iπ)/4) )(z+(1/(√t))e^((iπ)/4) )(z−(1/(√t))e^(−((iπ)/4)) )(z+(1/(√t))e^(−((iπ)/4)) )(z−e^((iπ)/4) )(z+e^((iπ)/4) )(z−e^(−((iπ)/4)) )(z+e^(−((iπ)/4)) )))  so the poles of ϕ are +^−  (1/(√t)) e^((iπ)/4)  ,+^− (1/(√t)) e^(−((iπ)/4)) ,+^− e^((iπ)/4) ,+^− e^(−((iπ)/4))   residus theorem give  ∫_(−∞) ^(+∞)    ϕ(z)dz =2iπ Σ_(im(z_k )>0)  Res(ϕ,z_k )  =2iπ{ Res(ϕ,(1/(√t))e^((iπ)/4) ) +Res(ϕ,−(1/(√t)) e^(−((iπ)/4)) )+Res(ϕ,e^((iπ)/4) )+Res(ϕ,−e^(−((iπ)/4)) )}

letf(t)=0arctan(tx2)1+x4dxwitht>0wehavef(t)=0x2(1+t2x4)(1+x4)dx2f(x)=+x2(1+t2x4)(1+x4)dxletconsiderthecomplexfunctionφ(z)=z2(t2z4+1)(z4+1)polesofφ?wehaveφ(z)=z2(tz2i)(tz2+i)(z2i)(z2+i)=z2(tzeiπ4)(tz+eiπ4)(tzeiπ4)(tz+eiπ4)(zeiπ4)(z+eiπ4)(zeiπ4)(z+eiπ4)=z2t2(z1teiπ4)(z+1teiπ4)(z1teiπ4)(z+1teiπ4)(zeiπ4)(z+eiπ4)(zeiπ4)(z+eiπ4)sothepolesofφare+1teiπ4,+1teiπ4,+eiπ4,+eiπ4residustheoremgive+φ(z)dz=2iπim(zk)>0Res(φ,zk)=2iπ{Res(φ,1teiπ4)+Res(φ,1teiπ4)+Res(φ,eiπ4)+Res(φ,eiπ4)}

Commented by Abdo msup. last updated on 09/Jan/19

Res(ϕ,(1/(√t)) e^((iπ)/4) ) =  (1/t^3 ) (i/(((2/(√t))e^((iπ)/4) )(((2i)/(√t))sin((π/4)))((2/(√t))cos((π/4)))((i/t)−i)((i/t)+i)))   =(1/(8t^3  (1/(t(√t))) (1/2)(−(1/t^2 )+1)))e^(−((iπ)/4))   =(((√t)e^(−((iπ)/4)) )/(4 t^2 (((t^2 −1)/t^2 )))) =(((√t)e^(−((iπ)/4)) )/(4(t^2 −1)))  ....be continued...

Res(φ,1teiπ4)=1t3i(2teiπ4)(2itsin(π4))(2tcos(π4))(iti)(it+i)=18t31tt12(1t2+1)eiπ4=teiπ44t2(t21t2)=teiπ44(t21)....becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com