All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 52482 by maxmathsup by imad last updated on 08/Jan/19
findthevalueor∫0∞arctan(x2)1+x4dx.
Commented by Abdo msup. last updated on 09/Jan/19
letf(t)=∫0∞arctan(tx2)1+x4dxwitht>0wehavef′(t)=∫0∞x2(1+t2x4)(1+x4)dx⇒2f′(x)=∫−∞+∞x2(1+t2x4)(1+x4)dxletconsiderthecomplexfunctionφ(z)=z2(t2z4+1)(z4+1)polesofφ?wehaveφ(z)=z2(tz2−i)(tz2+i)(z2−i)(z2+i)=z2(tz−eiπ4)(tz+eiπ4)(tz−e−iπ4)(tz+e−iπ4)(z−eiπ4)(z+eiπ4)(z−e−iπ4)(z+e−iπ4)=z2t2(z−1teiπ4)(z+1teiπ4)(z−1te−iπ4)(z+1te−iπ4)(z−eiπ4)(z+eiπ4)(z−e−iπ4)(z+e−iπ4)sothepolesofφare+−1teiπ4,+−1te−iπ4,+−eiπ4,+−e−iπ4residustheoremgive∫−∞+∞φ(z)dz=2iπ∑im(zk)>0Res(φ,zk)=2iπ{Res(φ,1teiπ4)+Res(φ,−1te−iπ4)+Res(φ,eiπ4)+Res(φ,−e−iπ4)}
Res(φ,1teiπ4)=1t3i(2teiπ4)(2itsin(π4))(2tcos(π4))(it−i)(it+i)=18t31tt12(−1t2+1)e−iπ4=te−iπ44t2(t2−1t2)=te−iπ44(t2−1)....becontinued...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com