Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 52487 by ajfour last updated on 08/Jan/19

Commented by ajfour last updated on 08/Jan/19

Find 𝛂_(max)  and 𝛂_(min)   in terms of p,q,a,b.

$${Find}\:\boldsymbol{\alpha}_{{max}} \:{and}\:\boldsymbol{\alpha}_{{min}} \:\:{in}\:{terms}\:{of}\:{p},{q},{a},{b}. \\ $$

Commented by mr W last updated on 09/Jan/19

question seems to be very hard.

$${question}\:{seems}\:{to}\:{be}\:{very}\:{hard}. \\ $$

Commented by ajfour last updated on 09/Jan/19

yes sir, let MjS Sir enlighten us.

$${yes}\:{sir},\:{let}\:{MjS}\:{Sir}\:{enlighten}\:{us}. \\ $$

Commented by MJS last updated on 09/Jan/19

...trying...

$$...\mathrm{trying}... \\ $$

Commented by MJS last updated on 09/Jan/19

I don′t think we can solve this.  it′s even hard with given values for a, b, p, q

$$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{think}\:\mathrm{we}\:\mathrm{can}\:\mathrm{solve}\:\mathrm{this}. \\ $$$$\mathrm{it}'\mathrm{s}\:\mathrm{even}\:\mathrm{hard}\:\mathrm{with}\:\mathrm{given}\:\mathrm{values}\:\mathrm{for}\:{a},\:{b},\:{p},\:{q} \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 09/Jan/19

i have some comments regarding this question  pls reply who posted the question...  1)are length p and q constant value..to find  max α point P  and Q have to  move away along  the elliptical path...then how the length PR that  is q and QR that is p remain same...  value of p and q must change  2)for min ∝ point P and Q come closer  as a results length p snd q get reduced.  for max α length p and q get increased.  3)what is the basis of this question...  for the given figure cosα=((PR^2 +QR^2 −PQ^2 )/(2×PR×QR))  cosα=((p^2 +q^2 −(PQ)_(constant value) ^2 )/(2pq))  then △α=0  so pls clarify the question clearly...

$${i}\:{have}\:{some}\:{comments}\:{regarding}\:{this}\:{question} \\ $$$${pls}\:{reply}\:{who}\:{posted}\:{the}\:{question}... \\ $$$$\left.\mathrm{1}\right){are}\:{length}\:{p}\:{and}\:{q}\:{constant}\:{value}..{to}\:{find} \\ $$$${max}\:\alpha\:{point}\:{P}\:\:{and}\:{Q}\:{have}\:{to}\:\:{move}\:{away}\:{along} \\ $$$${the}\:{elliptical}\:{path}...{then}\:{how}\:{the}\:{length}\:{PR}\:{that} \\ $$$${is}\:{q}\:{and}\:{QR}\:{that}\:{is}\:{p}\:{remain}\:{same}... \\ $$$${value}\:{of}\:{p}\:{and}\:{q}\:{must}\:{change} \\ $$$$\left.\mathrm{2}\right){for}\:{min}\:\propto\:{point}\:{P}\:{and}\:{Q}\:{come}\:{closer} \\ $$$${as}\:{a}\:{results}\:{length}\:{p}\:{snd}\:{q}\:{get}\:{reduced}. \\ $$$${for}\:{max}\:\alpha\:{length}\:{p}\:{and}\:{q}\:{get}\:{increased}. \\ $$$$\left.\mathrm{3}\right){what}\:{is}\:{the}\:{basis}\:{of}\:{this}\:{question}... \\ $$$${for}\:{the}\:{given}\:{figure}\:{cos}\alpha=\frac{{PR}^{\mathrm{2}} +{QR}^{\mathrm{2}} −{PQ}^{\mathrm{2}} }{\mathrm{2}×{PR}×{QR}} \\ $$$${cos}\alpha=\frac{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} −\left({PQ}\right)_{{constant}\:{value}} ^{\mathrm{2}} }{\mathrm{2}{pq}} \\ $$$${then}\:\bigtriangleup\alpha=\mathrm{0} \\ $$$${so}\:{pls}\:{clarify}\:{the}\:{question}\:{clearly}... \\ $$$$ \\ $$

Commented by ajfour last updated on 09/Jan/19

okay MjS Sir, thanks for giving it a try.

$${okay}\:{MjS}\:{Sir},\:{thanks}\:{for}\:{giving}\:{it}\:{a}\:{try}. \\ $$

Commented by ajfour last updated on 09/Jan/19

i′m very sorry Tanmay Sir, question  might not be correct for you.

$${i}'{m}\:{very}\:{sorry}\:{Tanmay}\:{Sir},\:{question} \\ $$$${might}\:{not}\:{be}\:{correct}\:{for}\:{you}. \\ $$

Commented by MJS last updated on 09/Jan/19

the question is: find all possible triples   PQR for given a, b, p, q  first step (hard enough), find all possible  points P, R for given a, b, q

$$\mathrm{the}\:\mathrm{question}\:\mathrm{is}:\:\mathrm{find}\:\mathrm{all}\:\mathrm{possible}\:\mathrm{triples}\: \\ $$$${PQR}\:\mathrm{for}\:\mathrm{given}\:{a},\:{b},\:{p},\:{q} \\ $$$$\mathrm{first}\:\mathrm{step}\:\left(\mathrm{hard}\:\mathrm{enough}\right),\:\mathrm{find}\:\mathrm{all}\:\mathrm{possible} \\ $$$$\mathrm{points}\:{P},\:{R}\:\mathrm{for}\:\mathrm{given}\:{a},\:{b},\:{q} \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 09/Jan/19

do the questin itself a valid question...if so there  must be co relation among p,q and α  some statement is missing...co relation  among p and q  and α...

$${do}\:{the}\:{questin}\:{itself}\:{a}\:{valid}\:{question}...{if}\:{so}\:{there} \\ $$$${must}\:{be}\:{co}\:{relation}\:{among}\:{p},{q}\:{and}\:\alpha \\ $$$${some}\:{statement}\:{is}\:{missing}...{co}\:{relation} \\ $$$${among}\:{p}\:{and}\:{q}\:\:{and}\:\alpha... \\ $$

Commented by ajfour last updated on 09/Jan/19

Commented by ajfour last updated on 09/Jan/19

let R(acos θ, bsin θ)  P[acos θ−pcos (θ+φ), bsin θ−psin (θ+φ)]  Q(acos θ−qcos φ, bsin θ−qsin φ)  let us call  cos θ = c_0  , cos φ= c_1 ,  cos (θ+φ)=c_2  , sin θ=s_0  , sin φ= s_1 ,  sin (θ+φ)= s_2  .    P  is on ellipse, so    (((ac_0 −qc_1 )^2 )/a^2 )+(((bs_0 −qs_1 )^2 )/b^2 ) = 1  ⇒ ((qc_1 ^2 )/a^2 )+((qs_1 ^2 )/b^2 ) = (2/(ab))(ac_0 c_1 +bs_0 s_1 )  similarly for Q on ellipse,  ⇒ ((pc_2 ^2 )/a^2 )+((ps_2 ^2 )/b^2 ) = (2/(ab))(ac_0 c_2 +bs_0 s_2 )    _________________________   rewriting    ac_0 c_1 +bs_0 s_1 = (q/(ab))(b^2 c_1 ^2 +a^2 s_1 ^2 )=(q/(ab))h_1     ac_0 c_2 +bs_0 s_2  = (p/(ab))(b^2 c_2 +a^2 s_2 ^2 )=(p/(ab))h_2   from these two eqs.     c_0  = ( determinant ((((qh_1 )/(ab)),(bs_1 )),(((ph_2 )/(ab)),(bs_2 )))_ / determinant (((ac_1 ),(bs_1 )),((ac_2 ),(bs_2 )))^ )  , s_0  = ( determinant (((ac_1 ),((qh_1 )/(ab))),((ac_2 ),((ph_2 )/(ab))))_ / determinant (((ac_1 ),(bs_1 )),((ac_2 ),(bs_2 )))^ )  Now  c_0 ^2 +s_0 ^2  = 1  ⇒ b^2 (((qh_1 s_2 −ph_2 s_1 )/(s_2 c_1 −c_2 s_1 )))^2 +a^2 (((ph_2 c_1 −qh_1 c_2 )/(s_2 c_1 −c_2 s_1 )))^2 = a^4 b^4   but  s_2 c_1 −c_2 s_1  = sin (φ+α)cos φ−cos (φ+α)sin φ                                    = sin α  hence  b^2 {qsin (φ+α)[b^2 cos^2 φ+a^2 sin^2 φ]         −psin φ[b^2 cos^2 (φ+α)+a^2 sin^2 (φ+α)]}^2     +a^2 {pcos φ[b^2 cos^2 (φ+α)+a^2 sin^2 (φ+α)]         −qcos (φ+α)[b^2 cos^2 φ+a^2 sin^2 φ]}^2                   = a^4 b^4 sin^2 α  And with (dα/dφ) = 0, φ can be obtained;  hence 𝛂_(max)  and 𝛂_(min) .

$${let}\:{R}\left({a}\mathrm{cos}\:\theta,\:{b}\mathrm{sin}\:\theta\right) \\ $$$${P}\left[{a}\mathrm{cos}\:\theta−{p}\mathrm{cos}\:\left(\theta+\phi\right),\:{b}\mathrm{sin}\:\theta−{p}\mathrm{sin}\:\left(\theta+\phi\right)\right] \\ $$$${Q}\left({a}\mathrm{cos}\:\theta−{q}\mathrm{cos}\:\phi,\:{b}\mathrm{sin}\:\theta−{q}\mathrm{sin}\:\phi\right) \\ $$$${let}\:{us}\:{call}\:\:\mathrm{cos}\:\theta\:=\:{c}_{\mathrm{0}} \:,\:\mathrm{cos}\:\phi=\:{c}_{\mathrm{1}} , \\ $$$$\mathrm{cos}\:\left(\theta+\phi\right)={c}_{\mathrm{2}} \:,\:\mathrm{sin}\:\theta={s}_{\mathrm{0}} \:,\:\mathrm{sin}\:\phi=\:{s}_{\mathrm{1}} , \\ $$$$\mathrm{sin}\:\left(\theta+\phi\right)=\:{s}_{\mathrm{2}} \:. \\ $$$$\:\:{P}\:\:{is}\:{on}\:{ellipse},\:{so} \\ $$$$\:\:\frac{\left({ac}_{\mathrm{0}} −{qc}_{\mathrm{1}} \right)^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{\left({bs}_{\mathrm{0}} −{qs}_{\mathrm{1}} \right)^{\mathrm{2}} }{{b}^{\mathrm{2}} }\:=\:\mathrm{1} \\ $$$$\Rightarrow\:\frac{{qc}_{\mathrm{1}} ^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{qs}_{\mathrm{1}} ^{\mathrm{2}} }{{b}^{\mathrm{2}} }\:=\:\frac{\mathrm{2}}{{ab}}\left({ac}_{\mathrm{0}} {c}_{\mathrm{1}} +{bs}_{\mathrm{0}} {s}_{\mathrm{1}} \right) \\ $$$${similarly}\:{for}\:{Q}\:{on}\:{ellipse}, \\ $$$$\Rightarrow\:\frac{{pc}_{\mathrm{2}} ^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{ps}_{\mathrm{2}} ^{\mathrm{2}} }{{b}^{\mathrm{2}} }\:=\:\frac{\mathrm{2}}{{ab}}\left({ac}_{\mathrm{0}} {c}_{\mathrm{2}} +{bs}_{\mathrm{0}} {s}_{\mathrm{2}} \right) \\ $$$$\:\:\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$$\:{rewriting} \\ $$$$\:\:{ac}_{\mathrm{0}} {c}_{\mathrm{1}} +{bs}_{\mathrm{0}} {s}_{\mathrm{1}} =\:\frac{{q}}{{ab}}\left({b}^{\mathrm{2}} {c}_{\mathrm{1}} ^{\mathrm{2}} +{a}^{\mathrm{2}} {s}_{\mathrm{1}} ^{\mathrm{2}} \right)=\frac{{q}}{{ab}}{h}_{\mathrm{1}} \\ $$$$\:\:{ac}_{\mathrm{0}} {c}_{\mathrm{2}} +{bs}_{\mathrm{0}} {s}_{\mathrm{2}} \:=\:\frac{{p}}{{ab}}\left({b}^{\mathrm{2}} {c}_{\mathrm{2}} +{a}^{\mathrm{2}} {s}_{\mathrm{2}} ^{\mathrm{2}} \right)=\frac{{p}}{{ab}}{h}_{\mathrm{2}} \\ $$$${from}\:{these}\:{two}\:{eqs}. \\ $$$$\:\:\:{c}_{\mathrm{0}} \:=\:\frac{\begin{vmatrix}{\frac{{qh}_{\mathrm{1}} }{{ab}}}&{{bs}_{\mathrm{1}} }\\{\frac{{ph}_{\mathrm{2}} }{{ab}}}&{{bs}_{\mathrm{2}} }\end{vmatrix}_{} }{\begin{vmatrix}{{ac}_{\mathrm{1}} }&{{bs}_{\mathrm{1}} }\\{{ac}_{\mathrm{2}} }&{{bs}_{\mathrm{2}} }\end{vmatrix}^{} }\:\:,\:{s}_{\mathrm{0}} \:=\:\frac{\begin{vmatrix}{{ac}_{\mathrm{1}} }&{\frac{{qh}_{\mathrm{1}} }{{ab}}}\\{{ac}_{\mathrm{2}} }&{\frac{{ph}_{\mathrm{2}} }{{ab}}}\end{vmatrix}_{} }{\begin{vmatrix}{{ac}_{\mathrm{1}} }&{{bs}_{\mathrm{1}} }\\{{ac}_{\mathrm{2}} }&{{bs}_{\mathrm{2}} }\end{vmatrix}^{} } \\ $$$${Now}\:\:{c}_{\mathrm{0}} ^{\mathrm{2}} +{s}_{\mathrm{0}} ^{\mathrm{2}} \:=\:\mathrm{1} \\ $$$$\Rightarrow\:{b}^{\mathrm{2}} \left(\frac{{qh}_{\mathrm{1}} {s}_{\mathrm{2}} −{ph}_{\mathrm{2}} {s}_{\mathrm{1}} }{{s}_{\mathrm{2}} {c}_{\mathrm{1}} −{c}_{\mathrm{2}} {s}_{\mathrm{1}} }\right)^{\mathrm{2}} +{a}^{\mathrm{2}} \left(\frac{{ph}_{\mathrm{2}} {c}_{\mathrm{1}} −{qh}_{\mathrm{1}} {c}_{\mathrm{2}} }{{s}_{\mathrm{2}} {c}_{\mathrm{1}} −{c}_{\mathrm{2}} {s}_{\mathrm{1}} }\right)^{\mathrm{2}} =\:{a}^{\mathrm{4}} {b}^{\mathrm{4}} \\ $$$${but}\:\:{s}_{\mathrm{2}} {c}_{\mathrm{1}} −{c}_{\mathrm{2}} {s}_{\mathrm{1}} \:=\:\mathrm{sin}\:\left(\phi+\alpha\right)\mathrm{cos}\:\phi−\mathrm{cos}\:\left(\phi+\alpha\right)\mathrm{sin}\:\phi \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{sin}\:\alpha \\ $$$${hence} \\ $$$${b}^{\mathrm{2}} \left\{{q}\mathrm{sin}\:\left(\phi+\alpha\right)\left[{b}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \phi+{a}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \phi\right]\right. \\ $$$$\left.\:\:\:\:\:\:\:−{p}\mathrm{sin}\:\phi\left[{b}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \left(\phi+\alpha\right)+{a}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \left(\phi+\alpha\right)\right]\right\}^{\mathrm{2}} \\ $$$$\:\:+{a}^{\mathrm{2}} \left\{{p}\mathrm{cos}\:\phi\left[{b}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \left(\phi+\alpha\right)+{a}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \left(\phi+\alpha\right)\right]\right. \\ $$$$\left.\:\:\:\:\:\:\:−{q}\mathrm{cos}\:\left(\phi+\alpha\right)\left[{b}^{\mathrm{2}} \mathrm{cos}\:^{\mathrm{2}} \phi+{a}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \phi\right]\right\}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:{a}^{\mathrm{4}} {b}^{\mathrm{4}} \mathrm{sin}\:^{\mathrm{2}} \alpha \\ $$$${And}\:{with}\:\frac{{d}\alpha}{{d}\phi}\:=\:\mathrm{0},\:\phi\:{can}\:{be}\:{obtained}; \\ $$$${hence}\:\boldsymbol{\alpha}_{{max}} \:{and}\:\boldsymbol{\alpha}_{{min}} . \\ $$

Commented by MJS last updated on 09/Jan/19

I don′t think this is necessary  we can “rotate” PR around the ellipse.  for any chosen R there are (depending on q)  0, 1, 2, 3 or 4 possible positions for P  (the problem is, we cannot generally solve   a polynome of 4^(th)  degree)  same for QR (p)  try with  a=5 b=3 (1) p=7 q=9 (2) p=4 q=6  to see where and how the problems occur  we need to make out different cases...  ...this was to the former comment of Sir  Tanmay

$$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{think}\:\mathrm{this}\:\mathrm{is}\:\mathrm{necessary} \\ $$$$\mathrm{we}\:\mathrm{can}\:``\mathrm{rotate}''\:{PR}\:\mathrm{around}\:\mathrm{the}\:\mathrm{ellipse}. \\ $$$$\mathrm{for}\:\mathrm{any}\:\mathrm{chosen}\:{R}\:\mathrm{there}\:\mathrm{are}\:\left(\mathrm{depending}\:\mathrm{on}\:{q}\right) \\ $$$$\mathrm{0},\:\mathrm{1},\:\mathrm{2},\:\mathrm{3}\:\mathrm{or}\:\mathrm{4}\:\mathrm{possible}\:\mathrm{positions}\:\mathrm{for}\:{P} \\ $$$$\left(\mathrm{the}\:\mathrm{problem}\:\mathrm{is},\:\mathrm{we}\:\mathrm{cannot}\:\mathrm{generally}\:\mathrm{solve}\:\right. \\ $$$$\left.\mathrm{a}\:\mathrm{polynome}\:\mathrm{of}\:\mathrm{4}^{\mathrm{th}} \:\mathrm{degree}\right) \\ $$$$\mathrm{same}\:\mathrm{for}\:{QR}\:\left({p}\right) \\ $$$$\mathrm{try}\:\mathrm{with} \\ $$$${a}=\mathrm{5}\:{b}=\mathrm{3}\:\left(\mathrm{1}\right)\:{p}=\mathrm{7}\:{q}=\mathrm{9}\:\left(\mathrm{2}\right)\:{p}=\mathrm{4}\:{q}=\mathrm{6} \\ $$$$\mathrm{to}\:\mathrm{see}\:\mathrm{where}\:\mathrm{and}\:\mathrm{how}\:\mathrm{the}\:\mathrm{problems}\:\mathrm{occur} \\ $$$$\mathrm{we}\:\mathrm{need}\:\mathrm{to}\:\mathrm{make}\:\mathrm{out}\:\mathrm{different}\:\mathrm{cases}... \\ $$$$...\mathrm{this}\:\mathrm{was}\:\mathrm{to}\:\mathrm{the}\:\mathrm{former}\:\mathrm{comment}\:\mathrm{of}\:\mathrm{Sir} \\ $$$$\mathrm{Tanmay} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com