Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 52539 by ajfour last updated on 09/Jan/19

Answered by mr W last updated on 09/Jan/19

p=((√([(b+c)^2 −a^2 ][a^2 −(b−c)^2 ]))/(2a))  r=((√([(b+c)^2 −a^2 ]bc))/(b+c))  m=((√(2(b^2 +c^2 )−a^2 ))/2)    ⇒a^2 =2(b^2 +c^2 )−4m^2    ...(iii)    ⇒(r^2 −bc)(b+c)^2 =2bc[2m^2 +2bc−(b+c)^2 ]    ⇒8p^2 [(b+c)^2 −2m^2 −2bc)=[4m^2 +4bc−(b+c)^2 ][(b+c)^2 −4m^2 ]    let X=b+c, Y=bc  ⇒(r^2 −Y)X^2 =2Y(2m^2 +2Y−X^2 )   ...(i)  ⇒8p^2 (X^2 −2Y−2m^2 )=(4m^2 +4Y−X^2 )(X^2 −4m^2 )   ...(ii)    from (i):  ⇒X^2 =((4Y(m^2 +Y))/(r^2 +Y))  ⇒p^2 [((2Y(m^2 +Y))/(r^2 +Y))−Y−m^2 ]=[m^2 +Y−((Y(m^2 +Y))/(r^2 +Y))][((Y(m^2 +Y))/(r^2 +Y))−m^2 ]  ⇒Y=r^2 (√((m^2 −p^2 )/(r^2 −p^2 )))   ...(1)  ⇒X=2(√((Y(m^2 +Y))/(r^2 +Y)))   ...(2)    with p=(√(15)), m=(√(31)), r=2(√6)  ⇒Y=24(√((31−15)/(24−15)))=24×(4/3)=32(=bc)  ⇒X=2(√((32(31+32))/(24+32)))=12(=b+c)  ⇒b and c are roots of  z^2 −12z+32=0  (z−8)(z−4)=0  ⇒b=8, c=4 (or b=4, c=8)  from (iii):  ⇒a=6

$${p}=\frac{\sqrt{\left[\left({b}+{c}\right)^{\mathrm{2}} −{a}^{\mathrm{2}} \right]\left[{a}^{\mathrm{2}} −\left({b}−{c}\right)^{\mathrm{2}} \right]}}{\mathrm{2}{a}} \\ $$$${r}=\frac{\sqrt{\left[\left({b}+{c}\right)^{\mathrm{2}} −{a}^{\mathrm{2}} \right]{bc}}}{{b}+{c}} \\ $$$${m}=\frac{\sqrt{\mathrm{2}\left({b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)−{a}^{\mathrm{2}} }}{\mathrm{2}} \\ $$$$ \\ $$$$\Rightarrow{a}^{\mathrm{2}} =\mathrm{2}\left({b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)−\mathrm{4}{m}^{\mathrm{2}} \:\:\:...\left({iii}\right) \\ $$$$ \\ $$$$\Rightarrow\left({r}^{\mathrm{2}} −{bc}\right)\left({b}+{c}\right)^{\mathrm{2}} =\mathrm{2}{bc}\left[\mathrm{2}{m}^{\mathrm{2}} +\mathrm{2}{bc}−\left({b}+{c}\right)^{\mathrm{2}} \right]\:\: \\ $$$$\Rightarrow\mathrm{8}{p}^{\mathrm{2}} \left[\left({b}+{c}\right)^{\mathrm{2}} −\mathrm{2}{m}^{\mathrm{2}} −\mathrm{2}{bc}\right)=\left[\mathrm{4}{m}^{\mathrm{2}} +\mathrm{4}{bc}−\left({b}+{c}\right)^{\mathrm{2}} \right]\left[\left({b}+{c}\right)^{\mathrm{2}} −\mathrm{4}{m}^{\mathrm{2}} \right] \\ $$$$ \\ $$$${let}\:{X}={b}+{c},\:{Y}={bc} \\ $$$$\Rightarrow\left({r}^{\mathrm{2}} −{Y}\right){X}^{\mathrm{2}} =\mathrm{2}{Y}\left(\mathrm{2}{m}^{\mathrm{2}} +\mathrm{2}{Y}−{X}^{\mathrm{2}} \right)\:\:\:...\left({i}\right) \\ $$$$\Rightarrow\mathrm{8}{p}^{\mathrm{2}} \left({X}^{\mathrm{2}} −\mathrm{2}{Y}−\mathrm{2}{m}^{\mathrm{2}} \right)=\left(\mathrm{4}{m}^{\mathrm{2}} +\mathrm{4}{Y}−{X}^{\mathrm{2}} \right)\left({X}^{\mathrm{2}} −\mathrm{4}{m}^{\mathrm{2}} \right)\:\:\:...\left({ii}\right) \\ $$$$ \\ $$$${from}\:\left({i}\right): \\ $$$$\Rightarrow{X}^{\mathrm{2}} =\frac{\mathrm{4}{Y}\left({m}^{\mathrm{2}} +{Y}\right)}{{r}^{\mathrm{2}} +{Y}} \\ $$$$\Rightarrow{p}^{\mathrm{2}} \left[\frac{\mathrm{2}{Y}\left({m}^{\mathrm{2}} +{Y}\right)}{{r}^{\mathrm{2}} +{Y}}−{Y}−{m}^{\mathrm{2}} \right]=\left[{m}^{\mathrm{2}} +{Y}−\frac{{Y}\left({m}^{\mathrm{2}} +{Y}\right)}{{r}^{\mathrm{2}} +{Y}}\right]\left[\frac{{Y}\left({m}^{\mathrm{2}} +{Y}\right)}{{r}^{\mathrm{2}} +{Y}}−{m}^{\mathrm{2}} \right] \\ $$$$\Rightarrow{Y}={r}^{\mathrm{2}} \sqrt{\frac{{m}^{\mathrm{2}} −{p}^{\mathrm{2}} }{{r}^{\mathrm{2}} −{p}^{\mathrm{2}} }}\:\:\:...\left(\mathrm{1}\right) \\ $$$$\Rightarrow{X}=\mathrm{2}\sqrt{\frac{{Y}\left({m}^{\mathrm{2}} +{Y}\right)}{{r}^{\mathrm{2}} +{Y}}}\:\:\:...\left(\mathrm{2}\right) \\ $$$$ \\ $$$${with}\:{p}=\sqrt{\mathrm{15}},\:{m}=\sqrt{\mathrm{31}},\:{r}=\mathrm{2}\sqrt{\mathrm{6}} \\ $$$$\Rightarrow{Y}=\mathrm{24}\sqrt{\frac{\mathrm{31}−\mathrm{15}}{\mathrm{24}−\mathrm{15}}}=\mathrm{24}×\frac{\mathrm{4}}{\mathrm{3}}=\mathrm{32}\left(={bc}\right) \\ $$$$\Rightarrow{X}=\mathrm{2}\sqrt{\frac{\mathrm{32}\left(\mathrm{31}+\mathrm{32}\right)}{\mathrm{24}+\mathrm{32}}}=\mathrm{12}\left(={b}+{c}\right) \\ $$$$\Rightarrow{b}\:{and}\:{c}\:{are}\:{roots}\:{of} \\ $$$${z}^{\mathrm{2}} −\mathrm{12}{z}+\mathrm{32}=\mathrm{0} \\ $$$$\left({z}−\mathrm{8}\right)\left({z}−\mathrm{4}\right)=\mathrm{0} \\ $$$$\Rightarrow{b}=\mathrm{8},\:{c}=\mathrm{4}\:\left({or}\:{b}=\mathrm{4},\:{c}=\mathrm{8}\right) \\ $$$${from}\:\left({iii}\right): \\ $$$$\Rightarrow{a}=\mathrm{6} \\ $$

Commented by ajfour last updated on 10/Jan/19

correct answers sir. thank you.  (i had created the question myself,  solving is a  tougher task i see now).

$${correct}\:{answers}\:{sir}.\:{thank}\:{you}. \\ $$$$\left({i}\:{had}\:{created}\:{the}\:{question}\:{myself},\right. \\ $$$$\left.{solving}\:{is}\:{a}\:\:{tougher}\:{task}\:{i}\:{see}\:{now}\right). \\ $$

Commented by mr W last updated on 10/Jan/19

it′s a nice question sir.  at the begining i thought the sides of  the triangle could be not unique. and  i thought it′s mayby impossible to determine  the sides of the triangle with direct  formula, then i found this solution  which can solve b+c and bc directly.  with this method, the sides of the  triangle can all be calculated directly  and exactly.

$${it}'{s}\:{a}\:{nice}\:{question}\:{sir}. \\ $$$${at}\:{the}\:{begining}\:{i}\:{thought}\:{the}\:{sides}\:{of} \\ $$$${the}\:{triangle}\:{could}\:{be}\:{not}\:{unique}.\:{and} \\ $$$${i}\:{thought}\:{it}'{s}\:{mayby}\:{impossible}\:{to}\:{determine} \\ $$$${the}\:{sides}\:{of}\:{the}\:{triangle}\:{with}\:{direct} \\ $$$${formula},\:{then}\:{i}\:{found}\:{this}\:{solution} \\ $$$${which}\:{can}\:{solve}\:{b}+{c}\:{and}\:{bc}\:{directly}. \\ $$$${with}\:{this}\:{method},\:{the}\:{sides}\:{of}\:{the} \\ $$$${triangle}\:{can}\:{all}\:{be}\:{calculated}\:{directly} \\ $$$${and}\:{exactly}. \\ $$

Commented by mr W last updated on 13/Jan/19

Answered by behi83417@gmail.com last updated on 09/Jan/19

4m^2 =2(b^2 +c^2 )−a^2 =124(i)  ⇒b^2 +c^2 =62+(a^2 /2)  r=((2bc)/(b+c))cos(A/2)=((2bc)/(b+c))(√((p(p−a))/(bc)))  (2/(b+c))(√(bcp(p−a)))=2(√6)⇒bcp(p−a)=6(b+c)^2 (ii)  bc(((a+b+c)/2))(((b+c−a)/2))=6(b+c)^2 ⇒  bc[(b+c)^2 −a^2 ]=24(b+c)^2   bc[62+(a^2 /2)+2bc−a^2 ]=24(b+c)^2 =24(62+(a^2 /2)+2bc)  ⇒bc(62+2bc−(a^2 /2))=24(62+(a^2 /2)+2bc)  62bc+2(bc)^2 −bc.(a^2 /2)=24(62+(a^2 /2)+2bc)  ⇒(bc)^2 +(7−(a^2 /4)).bc−6a^2 −744=0  .....

$$\mathrm{4}{m}^{\mathrm{2}} =\mathrm{2}\left({b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)−{a}^{\mathrm{2}} =\mathrm{124}\left({i}\right) \\ $$$$\Rightarrow{b}^{\mathrm{2}} +{c}^{\mathrm{2}} =\mathrm{62}+\frac{{a}^{\mathrm{2}} }{\mathrm{2}} \\ $$$${r}=\frac{\mathrm{2}{bc}}{{b}+{c}}{cos}\frac{{A}}{\mathrm{2}}=\frac{\mathrm{2}{bc}}{{b}+{c}}\sqrt{\frac{{p}\left({p}−{a}\right)}{{bc}}} \\ $$$$\frac{\mathrm{2}}{{b}+{c}}\sqrt{{bcp}\left({p}−{a}\right)}=\mathrm{2}\sqrt{\mathrm{6}}\Rightarrow{bcp}\left({p}−{a}\right)=\mathrm{6}\left({b}+{c}\right)^{\mathrm{2}} \left({ii}\right) \\ $$$${bc}\left(\frac{{a}+{b}+{c}}{\mathrm{2}}\right)\left(\frac{{b}+{c}−{a}}{\mathrm{2}}\right)=\mathrm{6}\left({b}+{c}\right)^{\mathrm{2}} \Rightarrow \\ $$$${bc}\left[\left({b}+{c}\right)^{\mathrm{2}} −{a}^{\mathrm{2}} \right]=\mathrm{24}\left({b}+{c}\right)^{\mathrm{2}} \\ $$$${bc}\left[\mathrm{62}+\frac{{a}^{\mathrm{2}} }{\mathrm{2}}+\mathrm{2}{bc}−{a}^{\mathrm{2}} \right]=\mathrm{24}\left({b}+{c}\right)^{\mathrm{2}} =\mathrm{24}\left(\mathrm{62}+\frac{{a}^{\mathrm{2}} }{\mathrm{2}}+\mathrm{2}{bc}\right) \\ $$$$\Rightarrow{bc}\left(\mathrm{62}+\mathrm{2}{bc}−\frac{{a}^{\mathrm{2}} }{\mathrm{2}}\right)=\mathrm{24}\left(\mathrm{62}+\frac{{a}^{\mathrm{2}} }{\mathrm{2}}+\mathrm{2}{bc}\right) \\ $$$$\mathrm{62}{bc}+\mathrm{2}\left({bc}\right)^{\mathrm{2}} −{bc}.\frac{{a}^{\mathrm{2}} }{\mathrm{2}}=\mathrm{24}\left(\mathrm{62}+\frac{{a}^{\mathrm{2}} }{\mathrm{2}}+\mathrm{2}{bc}\right) \\ $$$$\Rightarrow\left({bc}\right)^{\mathrm{2}} +\left(\mathrm{7}−\frac{{a}^{\mathrm{2}} }{\mathrm{4}}\right).{bc}−\mathrm{6}{a}^{\mathrm{2}} −\mathrm{744}=\mathrm{0} \\ $$$$..... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com