Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 52619 by tanmay.chaudhury50@gmail.com last updated on 10/Jan/19

1)∫_1 ^3 (dx/(x^2 +[x]^2 +1−2x[x]))  2)∫_(−1) ^1 [x[1+sinπx]+1]dx  3)∫_0 ^2 x^([x^2 +1]) dx  4)∫_0 ^1 e^(2x−[2x]) d(x−[x])   5)∫_(−2) ^3 ∣x^2 −5x−6∣dx  from question 1 to 4 [.]←greatest integer fuction  ∣.∣←mod  questions taken from B.Stat entrance exam...

1)13dxx2+[x]2+12x[x]2)11[x[1+sinπx]+1]dx3)02x[x2+1]dx4)01e2x[2x]d(x[x])5)23x25x6dxfromquestion1to4[.]greatestintegerfuction.∣←modquestionstakenfromB.Statentranceexam...

Commented by maxmathsup by imad last updated on 10/Jan/19

1) let I =∫_1 ^3   (dx/(x^2 +[x]^2 +1−2x[x])) ⇒ I =∫_1 ^3    (dx/((x−[x])^2 +1))  =∫_1 ^2    (dx/((x−1)^2 +1))+ ∫_2 ^3    (dx/((x−2)^2 +1)) but  ∫_1 ^2    (dx/((x−1)^2  +1)) =_(x−1=t )    ∫_0 ^1    (dt/(t^2  +1)) =[arctan(t)]_0 ^1  =(π/4)  ∫_2 ^3    (dx/((x−2)^2 +1)) =_(x−2=t)    ∫_0 ^1   (dt/(t^2  +1)) =(π/4) ⇒ I =(π/2) .

1)letI=13dxx2+[x]2+12x[x]I=13dx(x[x])2+1=12dx(x1)2+1+23dx(x2)2+1but12dx(x1)2+1=x1=t01dtt2+1=[arctan(t)]01=π423dx(x2)2+1=x2=t01dtt2+1=π4I=π2.

Commented by maxmathsup by imad last updated on 10/Jan/19

2)  let A=∫_(−1) ^1 [x[1+sin(πx)]+1]dx ⇒  A =∫_(−1) ^1  [x +x[sin(πx)]+1]dx=∫_(−1) ^1 [x+1 +x[sin(πx)]]dx  =_(x+1 =t)      ∫_0 ^2   [t +(t−1)[−sin(πt)] dt  =∫_0 ^1 [t+(t−1)[−sin(πt)]]dt +∫_1 ^2 [t+(t−1)[−sin(πt)]dt but  ∫_0 ^1 [t+(t−1)[−sin(πt)]]dt=∫_0 ^(1/2)  [t+(t−1)(0)]dt+∫_(1/2) ^1 [t+(t−1)(0)]dt  =∫_0 ^(1/2) [t]dt  +∫_(1/2) ^1 [t]dt =0 +0 =0  ∫_1 ^2 [t+(t−1)[−sin(πt)]]dt = ∫_1 ^(3/2) [t +(t−1)(−1)]dt +∫_(3/2) ^2 [t +(t−1)(−1)]dt  =∫_1 ^(3/2) [1]dt +∫_(3/2) ^2 [1] dt =(3/2) −1 +2−(3/2) =1  ⇒ A =1 +(perhaps)^2 ....

2)letA=11[x[1+sin(πx)]+1]dxA=11[x+x[sin(πx)]+1]dx=11[x+1+x[sin(πx)]]dx=x+1=t02[t+(t1)[sin(πt)]dt=01[t+(t1)[sin(πt)]]dt+12[t+(t1)[sin(πt)]dtbut01[t+(t1)[sin(πt)]]dt=012[t+(t1)(0)]dt+121[t+(t1)(0)]dt=012[t]dt+121[t]dt=0+0=012[t+(t1)[sin(πt)]]dt=132[t+(t1)(1)]dt+322[t+(t1)(1)]dt=132[1]dt+322[1]dt=321+232=1A=1+(perhaps)2....

Commented by tanmay.chaudhury50@gmail.com last updated on 10/Jan/19

thankyou sir..

thankyousir..

Commented by Abdo msup. last updated on 10/Jan/19

4) changement 2x=t give   ∫_0 ^1  e^(2x−[2x]) d(x−[x])=∫_0 ^2   e^(t−[t]) d((t/2) −[(t/2)])  =∫_0 ^1   e^(t−[t]) d((t/2) −[(t/2)])+∫_1 ^2  e^(t−[t]) d((t/2)−[(t/2)])  =∫_0 ^1  e^t (dt/2) +∫_1 ^2  e^(t−1) (dt/2)  =(1/2)[e^t ]_0 ^1  +(1/(2e))[e^t ]_1 ^2  =(1/2)(e−1) +(1/(2e))(e^2 −1) .

4)changement2x=tgive01e2x[2x]d(x[x])=02et[t]d(t2[t2])=01et[t]d(t2[t2])+12et[t]d(t2[t2])=01etdt2+12et1dt2=12[et]01+12e[et]12=12(e1)+12e(e21).

Answered by tanmay.chaudhury50@gmail.com last updated on 10/Jan/19

3)∫_0 ^2 x^([x^2 +1]) dx  ∫_0 ^1 xdx+∫_1 ^(√2) x^2 dx+∫_(√2) ^(√3) x^3 dx+∫_(√3) ^2 x^4 dx  now it can be solved...attaching graph for clarity..

3)02x[x2+1]dx01xdx+12x2dx+23x3dx+32x4dxnowitcanbesolved...attachinggraphforclarity..

Commented by tanmay.chaudhury50@gmail.com last updated on 10/Jan/19

Commented by tanmay.chaudhury50@gmail.com last updated on 10/Jan/19

 for 1>x≥0  [x^2 +1]=1            (√2) >x≥1  [x^2 +1]=2             (√3) >x≥(√2)  [x^2 +1]=3              2>x≥(√3)     [x^2 +1]=4

for1>x0[x2+1]=12>x1[x2+1]=23>x2[x2+1]=32>x3[x2+1]=4

Answered by ajfour last updated on 10/Jan/19

5)    I=∫_(−2) ^(  3) ∣(x+1)(x−6)∣dx         let  x+2= t  ⇒  I=∫_0 ^(  3) ∣(t−1)(t−8)∣dt           = ((t^3 /3)−((9t^2 )/2)+8t)∣_0 ^1 −((t^3 /3)−((9t^2 )/2)+8t)∣_1 ^5     = 2((1/3)−(9/2)+8)−(((125)/3)−((225)/2)+40)    = (2/3)−9+16−41−(2/3)+112+(1/2)−40    = (1/2)+128−90 = ((77)/2) .

5)I=23(x+1)(x6)dxletx+2=tI=03(t1)(t8)dt=(t339t22+8t)01(t339t22+8t)15=2(1392+8)(12532252+40)=239+164123+112+1240=12+12890=772.

Commented by tanmay.chaudhury50@gmail.com last updated on 10/Jan/19

thank you sir...

thankyousir...

Answered by tanmay.chaudhury50@gmail.com last updated on 10/Jan/19

4)∫_0 ^1 e^(2x−[2x]) d(x−[x])  [2x]=0    (1/2)>x≥0    [x]=0       (1/2)>x≥0  [2x]= 1         1>x≥(1/2)  [x]=0  ∫_0 ^(1/2) e^(2x−0) d(x−0)+∫_(1/2) ^1  e^(2x−1) d(x−0)  =∫_0 ^(1/2) e^(2x) dx+∫_(1/2) ^1 e^(2x−1) dx  now can be solved...

4)01e2x[2x]d(x[x])[2x]=012>x0[x]=012>x0[2x]=11>x12[x]=0012e2x0d(x0)+121e2x1d(x0)=012e2xdx+121e2x1dxnowcanbesolved...

Commented by tanmay.chaudhury50@gmail.com last updated on 10/Jan/19

Commented by tanmay.chaudhury50@gmail.com last updated on 10/Jan/19

Terms of Service

Privacy Policy

Contact: info@tinkutara.com