Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 52627 by ajfour last updated on 10/Jan/19

Commented by ajfour last updated on 10/Jan/19

Find radius of such a circle.

Findradiusofsuchacircle.

Answered by mr W last updated on 10/Jan/19

Q(−h,ah^2 )  y′_Q =−2ah  eqn. of QP:  y=ah^2 +(((x+h))/(2ah))  y=ax^2   ⇒ah^2 +((x+h)/(2ah))=ax^2   ⇒x^2 −(x/(2a^2 h))−h^2 −(1/(2a^2 ))=0  ⇒x_P =(1/2)[(1/(2a^2 h))+(√((1/(4a^4 h^2 ))+4(h^2 +(1/(2a^2 )))))]  ⇒x_P =h+(1/(2a^2 h))  ⇒y_P =ah^2 +(1/(2ah))(2h+(1/(2a^2 h)))  ⇒y_P =ah^2 +(1/a)+(1/(4a^3 h^2 ))  PQ^2 =(h+(1/(2a^2 h))+h)^2 +(ah^2 +(1/a)+(1/(4a^3 h^2 ))−ah^2 )^2   PQ^2 =(2h+(1/(2a^2 h)))^2 +((1/a)+(1/(4a^3 h^2 )))^2 =y_P ^2   (2h+(1/(2a^2 h)))^2 +((1/a)+(1/(4a^3 h^2 )))^2 =(ah^2 +(1/a)+(1/(4a^3 h^2 )))^2   ⇒(2ah+(1/(2ah)))^2 =h^2 a^2 (2+a^2 h^2 +(1/(2a^2 h^2 )))  let λ=ah  ⇒(2λ+(1/(2λ)))^2 =λ^2 (2+λ^2 +(1/(2λ^2 )))  ⇒4λ^6 −8λ^4 −6λ^2 −1=0  ⇒λ≈1.6159  ⇒R=y_P =(1/a)(1+λ^2 +(1/(4λ^2 )))≈((3.7069)/a)

Q(h,ah2)yQ=2aheqn.ofQP:y=ah2+(x+h)2ahy=ax2ah2+x+h2ah=ax2x2x2a2hh212a2=0xP=12[12a2h+14a4h2+4(h2+12a2)]xP=h+12a2hyP=ah2+12ah(2h+12a2h)yP=ah2+1a+14a3h2PQ2=(h+12a2h+h)2+(ah2+1a+14a3h2ah2)2PQ2=(2h+12a2h)2+(1a+14a3h2)2=yP2(2h+12a2h)2+(1a+14a3h2)2=(ah2+1a+14a3h2)2(2ah+12ah)2=h2a2(2+a2h2+12a2h2)letλ=ah(2λ+12λ)2=λ2(2+λ2+12λ2)4λ68λ46λ21=0λ1.6159R=yP=1a(1+λ2+14λ2)3.7069a

Commented by mr W last updated on 11/Jan/19

Commented by ajfour last updated on 11/Jan/19

Very brilliant Sir! Thank you.

VerybrilliantSir!Thankyou.

Answered by ajfour last updated on 11/Jan/19

Let ∠QPF = θ , Q(−h,ah^2 )  (dy/dx)∣_Q =−tan θ = −2ah  y_P  = R = ah^2 +Rcos θ  x_P  = −h+Rsin θ  y_P  = ax_P ^2    ⇒  R=ah^2 +Rcos θ = a(Rsin θ−h)^2   ⇒ cos θ = aRsin^2 θ−2ahsin θ  ⇒ cos θ=((a^2 h^2 sin^2 θ)/(1−cos θ))−2ahsin θ  let us now use      ah=((tan θ)/2)  ⇒  cos θ = ((tan^2 θ sin^2 θ)/(4(1−cos θ)))−sin θtan θ  ⇒ 4(1−cos θ)cos^2 θ(cos θ+((sin^2 θ)/(cos θ)))=sin^4 θ  let cos θ =λ  ⇒ 4(1−λ)λ=(1−λ^2 )^2   ⇒ 4λ=(1+λ)^2 (1−λ)  ⇒  λ≈ 0.2956  R = ((ah^2 )/(1−cos θ)) = ((tan^2 θ)/(4a(1−cos θ)))     = ((((1/(cos^2 θ))−1))/(4a(1−cos θ))) = (((1+cos θ))/(4acos^2 θ))     R ≈ ((3.707)/a) .

LetQPF=θ,Q(h,ah2)dydxQ=tanθ=2ahyP=R=ah2+RcosθxP=h+RsinθyP=axP2R=ah2+Rcosθ=a(Rsinθh)2cosθ=aRsin2θ2ahsinθcosθ=a2h2sin2θ1cosθ2ahsinθletusnowuseah=tanθ2cosθ=tan2θsin2θ4(1cosθ)sinθtanθ4(1cosθ)cos2θ(cosθ+sin2θcosθ)=sin4θletcosθ=λ4(1λ)λ=(1λ2)24λ=(1+λ)2(1λ)λ0.2956R=ah21cosθ=tan2θ4a(1cosθ)=(1cos2θ1)4a(1cosθ)=(1+cosθ)4acos2θR3.707a.

Commented by mr W last updated on 11/Jan/19

thank you sir!  can you get λ exactly? it′s a cubic eqn.

thankyousir!canyougetλexactly?itsacubiceqn.

Commented by ajfour last updated on 12/Jan/19

Thanks sir, i meant i tried but  couldn′t match with the calculated  answer in one attempt.

Thankssir,imeantitriedbutcouldntmatchwiththecalculatedanswerinoneattempt.

Commented by ajfour last updated on 11/Jan/19

no sir, how come ?

nosir,howcome?

Commented by mr W last updated on 11/Jan/19

4λ=(1+λ)^2 (1−λ)  ⇒λ^3 +λ^2 +3λ−1=0   (cubic eqn.)  let λ=t+δ  t^3 +(3δ+1)t^2 +(3δ^2 +2δ+3)t+δ^3 +δ^2 +3δ−1=0  let 3δ+1=0⇒δ=−(1/3)  ⇒t^3 +(8/3)t−((52)/(27))=0  (u+v)^3 −3uv(u+v)−(u^3 +v^3 )=0  let t=u+v  −3uv=(8/3)  ⇒u^3 v^3 =−((512)/(729))  ⇒u^3 +v^3 =((52)/(27))  u^3  and v^3  are roots of  x^2 −((52)/(27))x−((512)/(729))=0  x=((2(13±3(√(33))))/(27))=u^3  and v^3   ⇒u=(((2(13+3(√(33)))))^(1/3) /3)  ⇒v=(((2(13−3(√(33)))))^(1/3) /3)  ⇒λ=t+δ=u+v+δ  ⇒λ=((((2(13+3(√(33)))))^(1/3) +((2(13−3(√(33)))))^(1/3) −1)/3)≈0.295598

4λ=(1+λ)2(1λ)λ3+λ2+3λ1=0(cubiceqn.)letλ=t+δt3+(3δ+1)t2+(3δ2+2δ+3)t+δ3+δ2+3δ1=0let3δ+1=0δ=13t3+83t5227=0(u+v)33uv(u+v)(u3+v3)=0lett=u+v3uv=83u3v3=512729u3+v3=5227u3andv3arerootsofx25227x512729=0x=2(13±333)27=u3andv3u=2(13+333)33v=2(13333)33λ=t+δ=u+v+δλ=2(13+333)3+2(13333)3130.295598

Terms of Service

Privacy Policy

Contact: info@tinkutara.com