Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 52629 by scientist last updated on 10/Jan/19

show that ((sinα+sin3α+sin5α)/(cosα+cos3α+cos5α))= tan3α

showthatsinα+sin3α+sin5αcosα+cos3α+cos5α=tan3α

Answered by math1967 last updated on 10/Jan/19

((sin3α+2sin 3α.cos 2α)/(cos 3α+2cos 3αcos 2α))  =((sin 3α(1+cos 2α))/(cos 3α(1+cos 2α)))=tan3α

sin3α+2sin3α.cos2αcos3α+2cos3αcos2α=sin3α(1+cos2α)cos3α(1+cos2α)=tan3α

Answered by tanmay.chaudhury50@gmail.com last updated on 10/Jan/19

((sin5α+sinα+sin3α)/(cos5α+cosα+cos3α))  =((2sin3α.cos2α+sin3α)/(2cos3αcos2α+cos3α))  =((sin3α(2cos2α +1))/(cos3α(2cos2α +1)))  =tan3α

sin5α+sinα+sin3αcos5α+cosα+cos3α=2sin3α.cos2α+sin3α2cos3αcos2α+cos3α=sin3α(2cos2α+1)cos3α(2cos2α+1)=tan3α

Terms of Service

Privacy Policy

Contact: info@tinkutara.com