Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 52649 by Tawa1 last updated on 10/Jan/19

∫ ((4x^2  + 3)/((x^2  + x + 1)^2 )) dx

4x2+3(x2+x+1)2dx

Commented by maxmathsup by imad last updated on 10/Jan/19

et I =∫  ((4x^2  +3)/((x^2  +x+1)^2 ))dx ⇒ I =∫ ((4(x^2  +x+1)−4x−1)/((x^2  +x+1)^2 ))dx  =4 ∫   (dx/(x^2  +x +1)) −∫   ((4x+1)/((x^2  +x+1)^2 ))dx =4H −K  H =∫   (dx/((x+(1/2))^2  +(3/4))) =_(x+(1/2)=((√3)/2)tanθ)    ∫     (1/((3/4)(1+tan^2 θ))) ((√3)/2) (1+tan^2 θ)dθ  =((√3)/2) (4/3) ∫  dθ =(2/(√3)) θ +c_1 =(2/(√3)) arctan(((2x+1)/(√3))) +c_1   we have ((1/(x^2  +x+1)))^′ =−((2x+1)/((x^2  +x +1))) ⇒  ∫   ((4x+1)/((x^2  +x+1)^2 )) =2 ∫ ((2x+(1/2))/((x^2  +x+1)^2 ))dx =2 ∫  ((2x+1−(1/2))/((x^2  +x+1)^2 ))dx  =2{−(1/(x^2  +x+1))−(1/2) ∫   (dx/((x^2  +x+1)^2 ))}  =((−2)/(x^2  +x+1)) −∫  (dx/((x^2  +x+1)^2 )) but  ∫  (dx/((x^2  +x+1)^2 )) =∫  (dx/(((x+(1/2))^2  +(3/4))^2 )) =_(x+(1/2)=((√3)/2)tanθ)   ((16)/9)((√3)/2) ∫   (1/((1+tan^2 θ)^2 )) (1+tan^2 θ)dθ  =((8(√3))/9) ∫  (dθ/(1+tan^2 θ)) =((8(√3))/9) ∫ ((1+cos(2θ))/2)dθ =((4(√3))/9) ∫ (1+cos(2θ))dθ  =((4(√3))/9) θ   +((4(√3))/(18)) sin(2θ) =((4(√3))/9) arctan(((2x+1)/(√3))) +((2(√3))/9) sin(2arctan(((2x+1)/(√3))))+c_2  ⇒  I =(8/(√3)) arctan(((2x+1)/(√3))) +(2/(x^2  +x+1)) +((4(√3))/9) arctan(((2x+1)/(√3)))+((2(√3))/9) sin(2arctan(((2x+1)/(√3)))) +C

etI=4x2+3(x2+x+1)2dxI=4(x2+x+1)4x1(x2+x+1)2dx=4dxx2+x+14x+1(x2+x+1)2dx=4HKH=dx(x+12)2+34=x+12=32tanθ134(1+tan2θ)32(1+tan2θ)dθ=3243dθ=23θ+c1=23arctan(2x+13)+c1wehave(1x2+x+1)=2x+1(x2+x+1)4x+1(x2+x+1)2=22x+12(x2+x+1)2dx=22x+112(x2+x+1)2dx=2{1x2+x+112dx(x2+x+1)2}=2x2+x+1dx(x2+x+1)2butdx(x2+x+1)2=dx((x+12)2+34)2=x+12=32tanθ169321(1+tan2θ)2(1+tan2θ)dθ=839dθ1+tan2θ=8391+cos(2θ)2dθ=439(1+cos(2θ))dθ=439θ+4318sin(2θ)=439arctan(2x+13)+239sin(2arctan(2x+13))+c2I=83arctan(2x+13)+2x2+x+1+439arctan(2x+13)+239sin(2arctan(2x+13))+C

Commented by Tawa1 last updated on 10/Jan/19

God bless you sir

Godblessyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com