All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 52649 by Tawa1 last updated on 10/Jan/19
∫4x2+3(x2+x+1)2dx
Commented by maxmathsup by imad last updated on 10/Jan/19
etI=∫4x2+3(x2+x+1)2dx⇒I=∫4(x2+x+1)−4x−1(x2+x+1)2dx=4∫dxx2+x+1−∫4x+1(x2+x+1)2dx=4H−KH=∫dx(x+12)2+34=x+12=32tanθ∫134(1+tan2θ)32(1+tan2θ)dθ=3243∫dθ=23θ+c1=23arctan(2x+13)+c1wehave(1x2+x+1)′=−2x+1(x2+x+1)⇒∫4x+1(x2+x+1)2=2∫2x+12(x2+x+1)2dx=2∫2x+1−12(x2+x+1)2dx=2{−1x2+x+1−12∫dx(x2+x+1)2}=−2x2+x+1−∫dx(x2+x+1)2but∫dx(x2+x+1)2=∫dx((x+12)2+34)2=x+12=32tanθ16932∫1(1+tan2θ)2(1+tan2θ)dθ=839∫dθ1+tan2θ=839∫1+cos(2θ)2dθ=439∫(1+cos(2θ))dθ=439θ+4318sin(2θ)=439arctan(2x+13)+239sin(2arctan(2x+13))+c2⇒I=83arctan(2x+13)+2x2+x+1+439arctan(2x+13)+239sin(2arctan(2x+13))+C
Commented by Tawa1 last updated on 10/Jan/19
Godblessyousir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com