Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 111558 by Study last updated on 04/Sep/20

∫(x)^(1/x) dx=?

$$\int\sqrt[{{x}}]{{x}}{dx}=? \\ $$

Commented by Her_Majesty last updated on 04/Sep/20

we cannot solve ∫x^x dx, ∫(x)^(1/x) dx

$${we}\:{cannot}\:{solve}\:\int{x}^{{x}} {dx},\:\int\sqrt[{{x}}]{{x}}{dx} \\ $$

Commented by bemath last updated on 04/Sep/20

waw...this very hard

$${waw}...{this}\:{very}\:{hard} \\ $$

Commented by mathdave last updated on 04/Sep/20

we can solve them it very very simple

$${we}\:{can}\:{solve}\:{them}\:{it}\:{very}\:{very}\:{simple} \\ $$

Commented by Her_Majesty last updated on 04/Sep/20

show us

$${show}\:{us} \\ $$

Commented by mathdave last updated on 04/Sep/20

let me start by solving ∫x^x dx before  coming to solve ∫(x)^(1/x) dx  solution to ∫x^x dx  let I=∫x^x dx=∫e^(xlnx) dx  but the series term of  e^x =Σ_(n=0) ^∞ (x^n /(n!))  and that of   e^(xlnx) =Σ_(n=0) ^∞ (((xlnx)^n )/(n!))  I=Σ_(n=0) ^∞ (1/(n!))∫(xlnx)^n dx  let y=−lnx,x=e^(−y)    and  dx=−e^(−y) dy  now we have  I=Σ_(n=0) ^∞ (1/(n!))∫(e^(−y) )^n (−y)^n (−e^(−y) )dy  I=−Σ_(n=0) ^∞ (1/(n!))∫e^(−ny) e^(−y) (−1)^n (y)^n dy  I=−Σ_(n=0) ^∞ (((−1)^n )/(n!))∫y^n e^(−y(n+1)) dy  let z=y(n+1),y=(z/(n+1))  and dy=(dz/(n+1))  I=−Σ_(n=0) ^∞ (((−1)^n )/(n!))∫((z/(n+1)))^n e^(−z) ×(dz/(n+1))  I=−Σ_(n=0) ^∞ (((−1)^n )/(n!))∫((z^n e^(−z) )/((1+n)^n (1+n)))dz  I=−Σ_(n=0) ^∞ (((−1)^n )/(n!(1+n)^(n+1) ))∫z^n e^(−z) dz  from gamma function  Γ(l,x)=∫x^(l−1) e^(−x) d  when compare this to the original  function we have   l−1=n  then l=(n+1) and z=x so   Γ(n+1,z)=∫z^n e^(−z) dx  but z=y(n+1)  and y=−lnx  finally  z=−(k+1)lnx  if pluggin  these  we have   I=−Σ_(n=0) ^∞ (((−1)^n )/(n!(n+1)^(n+1) ))×−Γ[n+1,(n+1)lnx]  ∵∫x^x dx=Σ_(n=0) ^∞ (((−1)^n )/(n!(n+1)^(n+1) ))Γ[n+1,(n+1)lnx]  by mathdave(04/09/2020)

$${let}\:{me}\:{start}\:{by}\:{solving}\:\int{x}^{{x}} {dx}\:{before} \\ $$$${coming}\:{to}\:{solve}\:\int\sqrt[{{x}}]{{x}}{dx} \\ $$$${solution}\:{to}\:\int{x}^{{x}} {dx} \\ $$$${let}\:{I}=\int{x}^{{x}} {dx}=\int{e}^{{x}\mathrm{ln}{x}} {dx} \\ $$$${but}\:{the}\:{series}\:{term}\:{of} \\ $$$${e}^{{x}} =\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{x}^{{n}} }{{n}!}\:\:{and}\:{that}\:{of}\: \\ $$$${e}^{{x}\mathrm{ln}{x}} =\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left({x}\mathrm{ln}{x}\right)^{{n}} }{{n}!} \\ $$$${I}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!}\int\left({x}\mathrm{ln}{x}\right)^{{n}} {dx} \\ $$$${let}\:{y}=−\mathrm{ln}{x},{x}={e}^{−{y}} \:\:\:{and}\:\:{dx}=−{e}^{−{y}} {dy} \\ $$$${now}\:{we}\:{have} \\ $$$${I}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!}\int\left({e}^{−{y}} \right)^{{n}} \left(−{y}\right)^{{n}} \left(−{e}^{−{y}} \right){dy} \\ $$$${I}=−\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!}\int{e}^{−{ny}} {e}^{−{y}} \left(−\mathrm{1}\right)^{{n}} \left({y}\right)^{{n}} {dy} \\ $$$${I}=−\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!}\int{y}^{{n}} {e}^{−{y}\left({n}+\mathrm{1}\right)} {dy} \\ $$$${let}\:{z}={y}\left({n}+\mathrm{1}\right),{y}=\frac{{z}}{{n}+\mathrm{1}}\:\:{and}\:{dy}=\frac{{dz}}{{n}+\mathrm{1}} \\ $$$${I}=−\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!}\int\left(\frac{{z}}{{n}+\mathrm{1}}\right)^{{n}} {e}^{−{z}} ×\frac{{dz}}{{n}+\mathrm{1}} \\ $$$${I}=−\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!}\int\frac{{z}^{{n}} {e}^{−{z}} }{\left(\mathrm{1}+{n}\right)^{{n}} \left(\mathrm{1}+{n}\right)}{dz} \\ $$$${I}=−\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!\left(\mathrm{1}+{n}\right)^{{n}+\mathrm{1}} }\int{z}^{{n}} {e}^{−{z}} {dz} \\ $$$${from}\:{gamma}\:{function} \\ $$$$\Gamma\left({l},{x}\right)=\int{x}^{{l}−\mathrm{1}} {e}^{−{x}} {d} \\ $$$${when}\:{compare}\:{this}\:{to}\:{the}\:{original} \\ $$$${function}\:{we}\:{have}\: \\ $$$${l}−\mathrm{1}={n}\:\:{then}\:{l}=\left({n}+\mathrm{1}\right)\:{and}\:{z}={x}\:{so}\: \\ $$$$\Gamma\left({n}+\mathrm{1},{z}\right)=\int{z}^{{n}} {e}^{−{z}} {dx} \\ $$$${but}\:{z}={y}\left({n}+\mathrm{1}\right)\:\:{and}\:{y}=−\mathrm{ln}{x}\:\:{finally} \\ $$$${z}=−\left({k}+\mathrm{1}\right)\mathrm{ln}{x} \\ $$$${if}\:{pluggin}\:\:{these}\:\:{we}\:{have}\: \\ $$$${I}=−\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!\left({n}+\mathrm{1}\right)^{{n}+\mathrm{1}} }×−\Gamma\left[{n}+\mathrm{1},\left({n}+\mathrm{1}\right)\mathrm{ln}{x}\right] \\ $$$$\because\int{x}^{{x}} {dx}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!\left({n}+\mathrm{1}\right)^{{n}+\mathrm{1}} }\Gamma\left[{n}+\mathrm{1},\left({n}+\mathrm{1}\right)\mathrm{ln}{x}\right] \\ $$$${by}\:{mathdave}\left(\mathrm{04}/\mathrm{09}/\mathrm{2020}\right) \\ $$

Commented by Her_Majesty last updated on 04/Sep/20

thank you!  it′s great but not very very simple to everybody...

$${thank}\:{you}! \\ $$$${it}'{s}\:{great}\:{but}\:{not}\:{very}\:{very}\:{simple}\:{to}\:{everybody}... \\ $$

Commented by mathdave last updated on 04/Sep/20

u are welcome ur majesty

$${u}\:{are}\:{welcome}\:{ur}\:{majesty} \\ $$

Commented by bemath last updated on 04/Sep/20

waw..amazing...this is super very simple

$${waw}..{amazing}...{this}\:{is}\:{super}\:{very}\:{simple} \\ $$

Commented by Tawa11 last updated on 06/Sep/21

great sir

$$\mathrm{great}\:\mathrm{sir} \\ $$

Answered by mathdave last updated on 04/Sep/20

follow this psttern to get result for   ∫(x)^(1/x) dx  by saying let   I=∫(x)^(1/x) dx=∫x^(1/x) dx=∫e^((1/x)lnx) dx

$${follow}\:{this}\:{psttern}\:{to}\:{get}\:{result}\:{for}\: \\ $$$$\int\sqrt[{{x}}]{{x}}{dx} \\ $$$${by}\:{saying}\:{let}\: \\ $$$${I}=\int\sqrt[{{x}}]{{x}}{dx}=\int{x}^{\frac{\mathrm{1}}{{x}}} {dx}=\int{e}^{\frac{\mathrm{1}}{{x}}\mathrm{ln}{x}} {dx} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com