Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 5266 by Kasih last updated on 03/May/16

∫ ((3x)/(√(x^2 + 2x+ 5))) dx

$$\int\:\frac{\mathrm{3}{x}}{\sqrt{{x}^{\mathrm{2}} +\:\mathrm{2}{x}+\:\mathrm{5}}}\:{dx} \\ $$

Commented by prakash jain last updated on 03/May/16

You can integrate as following  ((3x+3)/(√(x^2 +2x+5)))−(3/(√(x^2 +2x+5)))  for the fist part Note that (d/dx)(x^2 +2x+5)=2(x+1)  The second part  x^2 +2x+5=(x+1)^2 +4  integrate by using formula for  (1/(√(x^2 +a^2 )))

$$\mathrm{You}\:\mathrm{can}\:\mathrm{integrate}\:\mathrm{as}\:\mathrm{following} \\ $$$$\frac{\mathrm{3}{x}+\mathrm{3}}{\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{5}}}−\frac{\mathrm{3}}{\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{5}}} \\ $$$$\mathrm{for}\:\mathrm{the}\:\mathrm{fist}\:\mathrm{part}\:\mathrm{Note}\:\mathrm{that}\:\frac{{d}}{{dx}}\left({x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{5}\right)=\mathrm{2}\left({x}+\mathrm{1}\right) \\ $$$$\mathrm{The}\:\mathrm{second}\:\mathrm{part} \\ $$$${x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{5}=\left({x}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{4} \\ $$$$\mathrm{integrate}\:\mathrm{by}\:\mathrm{using}\:\mathrm{formula}\:\mathrm{for} \\ $$$$\frac{\mathrm{1}}{\sqrt{{x}^{\mathrm{2}} +{a}^{\mathrm{2}} }} \\ $$

Answered by Yozzii last updated on 03/May/16

Let I=∫((3x)/(√(x^2 +2x+5)))dx.  I=(3/2)∫((2x+2−2)/(√(x^2 +2x+5)))dx  I=(3/2)∫[(((d/dx)(x^2 +2x+5))/(√(x^2 +2x+5)))−(2/(√(4+(x+1)^2 )))dx]  Let u=x^2 +2x+5⇒du=(2x+2)dx  ∴∫((2x+2)/(√(x^2 +2x+5)))dx=∫(du/(√u))=2(√u)+κ=2(√(x^2 +2x+5))+κ    Let x+1=2sinht⇒dx=2coshtdt.  Also, t=sinh^(−1) (((x+1)/2))=ln(((x+1)/2)+(1/2)(√(4+(x+1)^2 )))=ln(x+1+(√(x^2 +2x+5)))−ln2  ∴4+(x+1)^2 =4+4sinh^2 t=4(1+sinh^2 t)=4cosh^2 t  ∴∫(2/(√(4+(x+1)^2 )))dx=∫((2×2cosht)/(√(4cosh^2 t)))dt=2∫dt=2t+ϑ=2ln(x+1+(√(x^2 +2x+5)))−2ln2+ϑ    ∴I=(3/2)(2(√(x^2 +2x+5))+κ−2ln(x+1+(√(x^2 +2x+5)))+2ln2−ϑ)  I=3(√(x^2 +2x+5))−3ln(x+1+(√(x^2 +2x+5)))+C  where C=(3/2)κ+3ln2−(3/2)ϑ=constant

$${Let}\:{I}=\int\frac{\mathrm{3}{x}}{\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{5}}}{dx}. \\ $$$${I}=\frac{\mathrm{3}}{\mathrm{2}}\int\frac{\mathrm{2}{x}+\mathrm{2}−\mathrm{2}}{\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{5}}}{dx} \\ $$$${I}=\frac{\mathrm{3}}{\mathrm{2}}\int\left[\frac{\frac{{d}}{{dx}}\left({x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{5}\right)}{\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{5}}}−\frac{\mathrm{2}}{\sqrt{\mathrm{4}+\left({x}+\mathrm{1}\right)^{\mathrm{2}} }}{dx}\right] \\ $$$${Let}\:{u}={x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{5}\Rightarrow{du}=\left(\mathrm{2}{x}+\mathrm{2}\right){dx} \\ $$$$\therefore\int\frac{\mathrm{2}{x}+\mathrm{2}}{\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{5}}}{dx}=\int\frac{{du}}{\sqrt{{u}}}=\mathrm{2}\sqrt{{u}}+\kappa=\mathrm{2}\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{5}}+\kappa \\ $$$$ \\ $$$${Let}\:{x}+\mathrm{1}=\mathrm{2}{sinht}\Rightarrow{dx}=\mathrm{2}{coshtdt}. \\ $$$${Also},\:{t}={sinh}^{−\mathrm{1}} \left(\frac{{x}+\mathrm{1}}{\mathrm{2}}\right)={ln}\left(\frac{{x}+\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{4}+\left({x}+\mathrm{1}\right)^{\mathrm{2}} }\right)={ln}\left({x}+\mathrm{1}+\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{5}}\right)−{ln}\mathrm{2} \\ $$$$\therefore\mathrm{4}+\left({x}+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{4}+\mathrm{4}{sinh}^{\mathrm{2}} {t}=\mathrm{4}\left(\mathrm{1}+{sinh}^{\mathrm{2}} {t}\right)=\mathrm{4}{cosh}^{\mathrm{2}} {t} \\ $$$$\therefore\int\frac{\mathrm{2}}{\sqrt{\mathrm{4}+\left({x}+\mathrm{1}\right)^{\mathrm{2}} }}{dx}=\int\frac{\mathrm{2}×\mathrm{2}{cosht}}{\sqrt{\mathrm{4}{cosh}^{\mathrm{2}} {t}}}{dt}=\mathrm{2}\int{dt}=\mathrm{2}{t}+\vartheta=\mathrm{2}{ln}\left({x}+\mathrm{1}+\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{5}}\right)−\mathrm{2}{ln}\mathrm{2}+\vartheta \\ $$$$ \\ $$$$\therefore{I}=\frac{\mathrm{3}}{\mathrm{2}}\left(\mathrm{2}\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{5}}+\kappa−\mathrm{2}{ln}\left({x}+\mathrm{1}+\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{5}}\right)+\mathrm{2}{ln}\mathrm{2}−\vartheta\right) \\ $$$${I}=\mathrm{3}\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{5}}−\mathrm{3}{ln}\left({x}+\mathrm{1}+\sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{5}}\right)+{C} \\ $$$${where}\:{C}=\frac{\mathrm{3}}{\mathrm{2}}\kappa+\mathrm{3}{ln}\mathrm{2}−\frac{\mathrm{3}}{\mathrm{2}}\vartheta={constant} \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com