Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 52663 by ajfour last updated on 11/Jan/19

Commented by ajfour last updated on 11/Jan/19

Find radius R in terms of a and b.  Also find the central area in yellow  in terms of a and b.  (source: ajfour)

FindradiusRintermsofaandb.Alsofindthecentralareainyellowintermsofaandb.(source:ajfour)

Answered by mr W last updated on 11/Jan/19

(a^2 −r^2 )+(b^2 −r^2 )=((√(a^2 −r^2 ))−r+(√(b^2 −r^2 ))−r)^2   a^2 +b^2 −2r^2 =((√(a^2 −r^2 ))+(√(b^2 −r^2 ))−2r)^2   a^2 +b^2 −2r^2 =a^2 −r^2 +b^2 −r^2 +4r^2 +2[(√((a^2 −r^2 )(b^2 −r^2 )))−2r((√(a^2 −r^2 ))+(√(b^2 −r^2 )))]  ⇒(√((a^2 −r^2 )(b^2 −r^2 )))=2r((√(a^2 −r^2 ))+(√(b^2 −r^2 ))−r)  example:  a=3, b=4⇒r=0.9569

(a2r2)+(b2r2)=(a2r2r+b2r2r)2a2+b22r2=(a2r2+b2r22r)2a2+b22r2=a2r2+b2r2+4r2+2[(a2r2)(b2r2)2r(a2r2+b2r2)](a2r2)(b2r2)=2r(a2r2+b2r2r)example:a=3,b=4r=0.9569

Commented by ajfour last updated on 11/Jan/19

cant we have R in terms of a and b  Sir? i′ve proceeded to some length,  shall post soon, thanks afterall.

cantwehaveRintermsofaandbSir?iveproceededtosomelength,shallpostsoon,thanksafterall.

Answered by ajfour last updated on 18/Jan/19

((√(a^2 −r^2 ))−r+(√(b^2 −r^2 ))−r)^2 =a^2 +b^2 −2r^2   ⇒ a^2 −r^2 +b^2 −r^2 +4r^2      −4r((√(a^2 −r^2 ))+(√(b^2 −r^2 )))+2(√(a^2 −r^2 ))(√(b^2 −r^2 ))                 = a^2 +b^2 −2r^2   ⇒ (√(a^2 −r^2 ))(√(b^2 −r^2 )) +2r^2 =2r((√(a^2 −r^2 ))+(√(b^2 −r^2 )))  squaring  a^2 b^2 −(a^2 +b^2 )r^2 +5r^4 +4r^2 (√(a^2 −r^2 ))(√(b^2 −r^2 ))    = 4r^2 (a^2 +b^2 −2r^2 +2(√(a^2 −r^2 ))(√(b^2 −r^2 )))  ⇒ a^2 b^2 +13r^4  − 5(a^2 +b^2 )r^2              = 4r^2 (√(a^2 −r^2 ))(√(b^2 −r^2 ))  squaring again   a^4 b^4 +169r^8 +25(a^2 +b^2 )^2 r^4 +26a^2 b^2 r^4   −10a^2 b^2 (a^2 +b^2 )r^2 −130(a^2 +b^2 )r^6         = 16a^2 b^2 r^4 −16(a^2 +b^2 )r^6 +16r^8   ⇒   153r^8 −114(a^2 +b^2 )r^6      +5{(a^2 +b^2 )^2 +2a^2 b^2 }r^4        −10a^2 b^2 (a^2 +b^2 )r^2 +a^4 b^4  = 0  let  r^2 = t, ⇒  ((153t^2 )/(a^2 b^2 ))+((a^2 b^2 )/t^2 )+5{(((a^2 +b^2 )^2 )/(a^2 b^2 ))+2}              = 2(a^2 +b^2 ){((57t)/(a^2 b^2 ))+(5/t)}  let   (t/(ab)) = x , 5{(((a^2 +b^2 )^2 )/(a^2 b^2 ))+2}=c,    ((2(a^2 +b^2 ))/(ab))= d ; ⇒  153x^2 +(1/x^2 ) + c = d(57x+(5/x))  .......

(a2r2r+b2r2r)2=a2+b22r2a2r2+b2r2+4r24r(a2r2+b2r2)+2a2r2b2r2=a2+b22r2a2r2b2r2+2r2=2r(a2r2+b2r2)squaringa2b2(a2+b2)r2+5r4+4r2a2r2b2r2=4r2(a2+b22r2+2a2r2b2r2)a2b2+13r45(a2+b2)r2=4r2a2r2b2r2squaringagaina4b4+169r8+25(a2+b2)2r4+26a2b2r410a2b2(a2+b2)r2130(a2+b2)r6=16a2b2r416(a2+b2)r6+16r8153r8114(a2+b2)r6+5{(a2+b2)2+2a2b2}r410a2b2(a2+b2)r2+a4b4=0letr2=t,153t2a2b2+a2b2t2+5{(a2+b2)2a2b2+2}=2(a2+b2){57ta2b2+5t}lettab=x,5{(a2+b2)2a2b2+2}=c,2(a2+b2)ab=d;153x2+1x2+c=d(57x+5x).......

Commented by ajfour last updated on 11/Jan/19

yes sir, not useful etal..

yessir,notusefuletal..

Terms of Service

Privacy Policy

Contact: info@tinkutara.com