Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 52670 by maxmathsup by imad last updated on 11/Jan/19

study the convergence of Σ_(n=0) ^∞  sin(π(√(4n^2 +1)))

$${study}\:{the}\:{convergence}\:{of}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{sin}\left(\pi\sqrt{\mathrm{4}{n}^{\mathrm{2}} +\mathrm{1}}\right) \\ $$

Commented by maxmathsup by imad last updated on 12/Jan/19

we have π(√(4n^2 +1))=π(√(4n^2 (1+(1/(4n^2 )))))  =2nπ(√(1+(1/(4n^2 ))))   but we have  (√(1+x))=(1+x)^(1/2)  =1+(x/2) +(((1/2)((1/(2 ))−1))/2) x^2  +o(x^3 )  (x→0) ⇒  =1+(x/2) −(1/8) x^2  +o(x^3 ) ⇒(√(1+(1/(4n^2 ))))=1+(1/(8n^2 )) −(1/(8.16n^4 )) +o((1/n^6 )) ⇒  2nπ(√(1+(1/(4n^2 ))))=2nπ +(π/(4n)) −(π/(32n^3 )) +o((1/n^5 ))⇒sin(π(√(4n^2 +1))) ∼ sin((π/(4n)))∼(π/(4n))  but Σ (π/(4n)) diverges ⇒Σ sin(π(√(4n^2  +1))) diverges.

$$\left.{we}\:{have}\:\pi\sqrt{\mathrm{4}{n}^{\mathrm{2}} +\mathrm{1}}=\pi\sqrt{\mathrm{4}{n}^{\mathrm{2}} \left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}{n}^{\mathrm{2}} }\right.}\right)\:\:=\mathrm{2}{n}\pi\sqrt{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}{n}^{\mathrm{2}} }}\:\:\:{but}\:{we}\:{have} \\ $$$$\sqrt{\mathrm{1}+{x}}=\left(\mathrm{1}+{x}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \:=\mathrm{1}+\frac{{x}}{\mathrm{2}}\:+\frac{\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{2}\:}−\mathrm{1}\right)}{\mathrm{2}}\:{x}^{\mathrm{2}} \:+{o}\left({x}^{\mathrm{3}} \right)\:\:\left({x}\rightarrow\mathrm{0}\right)\:\Rightarrow \\ $$$$=\mathrm{1}+\frac{{x}}{\mathrm{2}}\:−\frac{\mathrm{1}}{\mathrm{8}}\:{x}^{\mathrm{2}} \:+{o}\left({x}^{\mathrm{3}} \right)\:\Rightarrow\sqrt{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}{n}^{\mathrm{2}} }}=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{8}{n}^{\mathrm{2}} }\:−\frac{\mathrm{1}}{\mathrm{8}.\mathrm{16}{n}^{\mathrm{4}} }\:+{o}\left(\frac{\mathrm{1}}{{n}^{\mathrm{6}} }\right)\:\Rightarrow \\ $$$$\mathrm{2}{n}\pi\sqrt{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}{n}^{\mathrm{2}} }}=\mathrm{2}{n}\pi\:+\frac{\pi}{\mathrm{4}{n}}\:−\frac{\pi}{\mathrm{32}{n}^{\mathrm{3}} }\:+{o}\left(\frac{\mathrm{1}}{{n}^{\mathrm{5}} }\right)\Rightarrow{sin}\left(\pi\sqrt{\mathrm{4}{n}^{\mathrm{2}} +\mathrm{1}}\right)\:\sim\:{sin}\left(\frac{\pi}{\mathrm{4}{n}}\right)\sim\frac{\pi}{\mathrm{4}{n}} \\ $$$${but}\:\Sigma\:\frac{\pi}{\mathrm{4}{n}}\:{diverges}\:\Rightarrow\Sigma\:{sin}\left(\pi\sqrt{\mathrm{4}{n}^{\mathrm{2}} \:+\mathrm{1}}\right)\:{diverges}. \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 11/Jan/19

((4n^2 +1)/2)≥(√(4n^2 ×1))   4n^2 +1≥4n  (√(4n^2 +1)) ≥(√(4n))   sin(π(√(4n^2 +1)) )≈sin(π×2(√n) )  sin((√n) ×2π)  1)now when n is perfect square  sin((√n) ×2π)=0  2)(√n) =I+f I=integer  f=fractional part    sin{(I+f)2π}  =sin{I×2π+f×2π}  =sin(f×2π)   1≥sin(2πf)≥−1  so Σ_(n=0) ^∞ sin(π(√(4n^2 +1)) ) does not converge      Σ_(n=0) ^∞ sin(π(√(4n^2 +1)) ) oscilates between ± ∞  i have tried to solve ...pls check is the logic  true...

$$\frac{\mathrm{4}{n}^{\mathrm{2}} +\mathrm{1}}{\mathrm{2}}\geqslant\sqrt{\mathrm{4}{n}^{\mathrm{2}} ×\mathrm{1}}\: \\ $$$$\mathrm{4}{n}^{\mathrm{2}} +\mathrm{1}\geqslant\mathrm{4}{n} \\ $$$$\sqrt{\mathrm{4}{n}^{\mathrm{2}} +\mathrm{1}}\:\geqslant\sqrt{\mathrm{4}{n}}\: \\ $$$${sin}\left(\pi\sqrt{\mathrm{4}{n}^{\mathrm{2}} +\mathrm{1}}\:\right)\approx{sin}\left(\pi×\mathrm{2}\sqrt{{n}}\:\right) \\ $$$${sin}\left(\sqrt{{n}}\:×\mathrm{2}\pi\right) \\ $$$$\left.\mathrm{1}\right){now}\:{when}\:{n}\:{is}\:{perfect}\:{square} \\ $$$${sin}\left(\sqrt{{n}}\:×\mathrm{2}\pi\right)=\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\sqrt{{n}}\:={I}+{f}\:{I}={integer} \\ $$$${f}={fractional}\:{part} \\ $$$$ \\ $$$${sin}\left\{\left({I}+{f}\right)\mathrm{2}\pi\right\} \\ $$$$={sin}\left\{{I}×\mathrm{2}\pi+{f}×\mathrm{2}\pi\right\} \\ $$$$={sin}\left({f}×\mathrm{2}\pi\right) \\ $$$$\:\mathrm{1}\geqslant{sin}\left(\mathrm{2}\pi{f}\right)\geqslant−\mathrm{1} \\ $$$${so}\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{sin}\left(\pi\sqrt{\mathrm{4}{n}^{\mathrm{2}} +\mathrm{1}}\:\right)\:{does}\:{not}\:{converge} \\ $$$$\:\:\:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}{sin}\left(\pi\sqrt{\mathrm{4}{n}^{\mathrm{2}} +\mathrm{1}}\:\right)\:{oscilates}\:{between}\:\pm\:\infty \\ $$$${i}\:{have}\:{tried}\:{to}\:{solve}\:...{pls}\:{check}\:{is}\:{the}\:{logic} \\ $$$${true}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com