Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 52671 by maxmathsup by imad last updated on 11/Jan/19

study the sequence u_0 =1 and u_(n+1)   =(1/(1+u_n ^2 ))

$${study}\:{the}\:{sequence}\:{u}_{\mathrm{0}} =\mathrm{1}\:{and}\:{u}_{{n}+\mathrm{1}} \:\:=\frac{\mathrm{1}}{\mathrm{1}+{u}_{{n}} ^{\mathrm{2}} } \\ $$

Commented by maxmathsup by imad last updated on 11/Mar/19

its clear that u_n >0 ∀n    let prove that 0<u_n ≤1   n=0 ⇒ 0<u_o ≤1 (true) let suppose 0<u_n ≤1 ⇒ u_(n+1) −1=(1/(1+u_n ^2 )) −1  =−(u_n ^2 /(1+u_n ^2 )) ≤0 ⇒ 0<u_(n+1) ≤1  we have  u_(n+1) =f(u_n )  with f(x)=(1/(1+x^2 ))  (we can take x>0) ⇒f^′ (x)=−((2x)/(1+x^2 ))<0 ⇒  f is decresing   x      0                            +∞  f^′ (x)             −  f(x)1       decre          0       is f have a fixed point  f(x)=x ⇒(1/(1+x^2 )) =x ⇒1 =x +x^3  ⇒x^3  +x−1 =0  let p(x) =x^3  +x−1   we have p^′ (x)=3x^2  +1>0 ⇒p is incressing  p(0)=−1 <0  and p(1) =1 >0 ⇒∃! α_0   ∈]0,1[ /p(α_0 )=0  and α is the fixed  point  ⇒ α_0 =lim_(n→+∞)  u_n

$${its}\:{clear}\:{that}\:{u}_{{n}} >\mathrm{0}\:\forall{n}\:\:\:\:{let}\:{prove}\:{that}\:\mathrm{0}<{u}_{{n}} \leqslant\mathrm{1}\: \\ $$$${n}=\mathrm{0}\:\Rightarrow\:\mathrm{0}<{u}_{{o}} \leqslant\mathrm{1}\:\left({true}\right)\:{let}\:{suppose}\:\mathrm{0}<{u}_{{n}} \leqslant\mathrm{1}\:\Rightarrow\:{u}_{{n}+\mathrm{1}} −\mathrm{1}=\frac{\mathrm{1}}{\mathrm{1}+{u}_{{n}} ^{\mathrm{2}} }\:−\mathrm{1} \\ $$$$=−\frac{{u}_{{n}} ^{\mathrm{2}} }{\mathrm{1}+{u}_{{n}} ^{\mathrm{2}} }\:\leqslant\mathrm{0}\:\Rightarrow\:\mathrm{0}<{u}_{{n}+\mathrm{1}} \leqslant\mathrm{1}\:\:{we}\:{have} \\ $$$${u}_{{n}+\mathrm{1}} ={f}\left({u}_{{n}} \right)\:\:{with}\:{f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }\:\:\left({we}\:{can}\:{take}\:{x}>\mathrm{0}\right)\:\Rightarrow{f}^{'} \left({x}\right)=−\frac{\mathrm{2}{x}}{\mathrm{1}+{x}^{\mathrm{2}} }<\mathrm{0}\:\Rightarrow \\ $$$${f}\:{is}\:{decresing}\: \\ $$$${x}\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\infty \\ $$$${f}^{'} \left({x}\right)\:\:\:\:\:\:\:\:\:\:\:\:\:− \\ $$$${f}\left({x}\right)\mathrm{1}\:\:\:\:\:\:\:{decre}\:\:\:\:\:\:\:\:\:\:\mathrm{0}\:\:\:\:\:\:\:{is}\:{f}\:{have}\:{a}\:{fixed}\:{point} \\ $$$${f}\left({x}\right)={x}\:\Rightarrow\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }\:={x}\:\Rightarrow\mathrm{1}\:={x}\:+{x}^{\mathrm{3}} \:\Rightarrow{x}^{\mathrm{3}} \:+{x}−\mathrm{1}\:=\mathrm{0} \\ $$$${let}\:{p}\left({x}\right)\:={x}^{\mathrm{3}} \:+{x}−\mathrm{1}\:\:\:{we}\:{have}\:{p}^{'} \left({x}\right)=\mathrm{3}{x}^{\mathrm{2}} \:+\mathrm{1}>\mathrm{0}\:\Rightarrow{p}\:{is}\:{incressing} \\ $$$$\left.{p}\left(\mathrm{0}\right)=−\mathrm{1}\:<\mathrm{0}\:\:{and}\:{p}\left(\mathrm{1}\right)\:=\mathrm{1}\:>\mathrm{0}\:\Rightarrow\exists!\:\alpha_{\mathrm{0}} \:\:\in\right]\mathrm{0},\mathrm{1}\left[\:/{p}\left(\alpha_{\mathrm{0}} \right)=\mathrm{0}\:\:{and}\:\alpha\:{is}\:{the}\:{fixed}\right. \\ $$$${point}\:\:\Rightarrow\:\alpha_{\mathrm{0}} ={lim}_{{n}\rightarrow+\infty} \:{u}_{{n}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com