Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 52680 by maxmathsup by imad last updated on 11/Jan/19

let f_n (x)=((sin(nx))/n^3 )   and f(x)=Σ_(n=1) ^∞  f_n (x)  calculate ∫_0 ^π  f(x)dx .

$${let}\:{f}_{{n}} \left({x}\right)=\frac{{sin}\left({nx}\right)}{{n}^{\mathrm{3}} }\:\:\:{and}\:{f}\left({x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:{f}_{{n}} \left({x}\right) \\ $$$${calculate}\:\int_{\mathrm{0}} ^{\pi} \:{f}\left({x}\right){dx}\:. \\ $$

Commented by maxmathsup by imad last updated on 11/Jan/19

its clear that the serie Σ f_n (x) converge simpl.and unif. because  ∣f_n (x)∣≤(1/n^3 )  and Σ (1/n^3 ) converges  we have  ∫_0 ^π f(x)dx =∫_0 ^π Σ_(n=1) ^∞    ((sin(nx))/n^3 ) =Σ_(n=1) ^∞  (1/n^3 ) ∫_0 ^π  sin(nx)dx  =Σ_(n=1) ^∞  (1/n^3 )[−(1/n)cos(nx)]_0 ^π  =Σ_(n=1) ^∞  (1/n^4 )(1−(−1)^n )  =2 Σ_(n=0) ^∞   (1/((2n+1)^4 ))  but we have proved that Σ_(n=1) ^∞  (1/n^4 ) =(π^4 /(90)) ⇒  Σ_(n=0) ^∞  (1/((2n+1)^4 )) + (1/(16))Σ_(n=1) ^∞   (1/n^4 ) =(π^4 /(90)) ⇒Σ_(n=0) ^∞  (1/((2n+1)^4 )) =(π^4 /(90)) −(1/(16)) (π^4 /(90))  =(1−(1/(16)))(π^4 /(90)) =((15)/(16)) (π^4 /(90)) =((3.5)/(3.30 16)) π^4  =(π^4 /(6.16)) =(π^4 /(96)) ⇒  ∫_0 ^π f(x)dx =2 .(π^4 /(96)) ⇒ ∫_0 ^π f(x)dx =(π^4 /(48)) .

$${its}\:{clear}\:{that}\:{the}\:{serie}\:\Sigma\:{f}_{{n}} \left({x}\right)\:{converge}\:{simpl}.{and}\:{unif}.\:{because} \\ $$$$\mid{f}_{{n}} \left({x}\right)\mid\leqslant\frac{\mathrm{1}}{{n}^{\mathrm{3}} }\:\:{and}\:\Sigma\:\frac{\mathrm{1}}{{n}^{\mathrm{3}} }\:{converges}\:\:{we}\:{have} \\ $$$$\int_{\mathrm{0}} ^{\pi} {f}\left({x}\right){dx}\:=\int_{\mathrm{0}} ^{\pi} \sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{{sin}\left({nx}\right)}{{n}^{\mathrm{3}} }\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{\mathrm{3}} }\:\int_{\mathrm{0}} ^{\pi} \:{sin}\left({nx}\right){dx} \\ $$$$=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{\mathrm{3}} }\left[−\frac{\mathrm{1}}{{n}}{cos}\left({nx}\right)\right]_{\mathrm{0}} ^{\pi} \:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{\mathrm{4}} }\left(\mathrm{1}−\left(−\mathrm{1}\right)^{{n}} \right) \\ $$$$=\mathrm{2}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{4}} }\:\:{but}\:{we}\:{have}\:{proved}\:{that}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{\mathrm{4}} }\:=\frac{\pi^{\mathrm{4}} }{\mathrm{90}}\:\Rightarrow \\ $$$$\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{4}} }\:+\:\frac{\mathrm{1}}{\mathrm{16}}\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{{n}^{\mathrm{4}} }\:=\frac{\pi^{\mathrm{4}} }{\mathrm{90}}\:\Rightarrow\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{4}} }\:=\frac{\pi^{\mathrm{4}} }{\mathrm{90}}\:−\frac{\mathrm{1}}{\mathrm{16}}\:\frac{\pi^{\mathrm{4}} }{\mathrm{90}} \\ $$$$=\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{16}}\right)\frac{\pi^{\mathrm{4}} }{\mathrm{90}}\:=\frac{\mathrm{15}}{\mathrm{16}}\:\frac{\pi^{\mathrm{4}} }{\mathrm{90}}\:=\frac{\mathrm{3}.\mathrm{5}}{\mathrm{3}.\mathrm{30}\:\mathrm{16}}\:\pi^{\mathrm{4}} \:=\frac{\pi^{\mathrm{4}} }{\mathrm{6}.\mathrm{16}}\:=\frac{\pi^{\mathrm{4}} }{\mathrm{96}}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\pi} {f}\left({x}\right){dx}\:=\mathrm{2}\:.\frac{\pi^{\mathrm{4}} }{\mathrm{96}}\:\Rightarrow\:\int_{\mathrm{0}} ^{\pi} {f}\left({x}\right){dx}\:=\frac{\pi^{\mathrm{4}} }{\mathrm{48}}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com