Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 52682 by maxmathsup by imad last updated on 11/Jan/19

find nature of the serie Σ_(n=1) ^∞   (((√(n+1))−(√n))/(nln(n+1)))

$${find}\:{nature}\:{of}\:{the}\:{serie}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\sqrt{{n}+\mathrm{1}}−\sqrt{{n}}}{{nln}\left({n}+\mathrm{1}\right)} \\ $$

Commented by Abdo msup. last updated on 12/Jan/19

let u_n =(((√(n+1))−(√n))/(nln(n+1)))  we have  u_n =(1/(((√(n+1))+(√n))nln(n+1)))  (√(n+1))+(√n) ∼2(√n) and ln(n+1)=ln(n(1+(1/n)))  ln(n) +ln(1+(1/n)) ∼ln(n)+(1/n) ⇒  u_n ∼ (1/(2(√n)(ln(n)+(1/n)))) = (1/(2(√n)ln(n) +(2/(√n)))) ∼(1/(2(√n)ln(n)))  the sequence v_n =(1/(2(√n)ln(n))) is decreasing ⇒  Σv_n  and  ∫_2 ^(+∞)    (dx/(2(√x)ln(x))) have the same nature of  convergence but   ∫_2 ^(+∞)   (dx/(2(√x)ln(x))) =_(ln(x)=t)     ∫_(ln(2)) ^(+∞)    ((e^t dt)/(2e^(t/2) t))  =(1/2)∫_(ln(2)) ^(+∞)     (e^(t/2) /t) dt  and this integral diverges  (lim_(t→+∞)  t .(e^(t/2) /t) =+∞+ so Σ u_n  diverges.

$${let}\:{u}_{{n}} =\frac{\sqrt{{n}+\mathrm{1}}−\sqrt{{n}}}{{nln}\left({n}+\mathrm{1}\right)}\:\:{we}\:{have} \\ $$$${u}_{{n}} =\frac{\mathrm{1}}{\left(\sqrt{{n}+\mathrm{1}}+\sqrt{{n}}\right){nln}\left({n}+\mathrm{1}\right)} \\ $$$$\sqrt{{n}+\mathrm{1}}+\sqrt{{n}}\:\sim\mathrm{2}\sqrt{{n}}\:{and}\:{ln}\left({n}+\mathrm{1}\right)={ln}\left({n}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)\right) \\ $$$${ln}\left({n}\right)\:+{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)\:\sim{ln}\left({n}\right)+\frac{\mathrm{1}}{{n}}\:\Rightarrow \\ $$$${u}_{{n}} \sim\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{{n}}\left({ln}\left({n}\right)+\frac{\mathrm{1}}{{n}}\right)}\:=\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{{n}}{ln}\left({n}\right)\:+\frac{\mathrm{2}}{\sqrt{{n}}}}\:\sim\frac{\mathrm{1}}{\mathrm{2}\sqrt{{n}}{ln}\left({n}\right)} \\ $$$${the}\:{sequence}\:{v}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}\sqrt{{n}}{ln}\left({n}\right)}\:{is}\:{decreasing}\:\Rightarrow \\ $$$$\Sigma{v}_{{n}} \:{and}\:\:\int_{\mathrm{2}} ^{+\infty} \:\:\:\frac{{dx}}{\mathrm{2}\sqrt{{x}}{ln}\left({x}\right)}\:{have}\:{the}\:{same}\:{nature}\:{of} \\ $$$${convergence}\:{but}\: \\ $$$$\int_{\mathrm{2}} ^{+\infty} \:\:\frac{{dx}}{\mathrm{2}\sqrt{{x}}{ln}\left({x}\right)}\:=_{{ln}\left({x}\right)={t}} \:\:\:\:\int_{{ln}\left(\mathrm{2}\right)} ^{+\infty} \:\:\:\frac{{e}^{{t}} {dt}}{\mathrm{2}{e}^{\frac{{t}}{\mathrm{2}}} {t}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{{ln}\left(\mathrm{2}\right)} ^{+\infty} \:\:\:\:\frac{{e}^{\frac{{t}}{\mathrm{2}}} }{{t}}\:{dt}\:\:{and}\:{this}\:{integral}\:{diverges} \\ $$$$\left({lim}_{{t}\rightarrow+\infty} \:{t}\:.\frac{{e}^{\frac{{t}}{\mathrm{2}}} }{{t}}\:=+\infty+\:{so}\:\Sigma\:{u}_{{n}} \:{diverges}.\right. \\ $$

Answered by tanmay.chaudhury50@gmail.com last updated on 12/Jan/19

(T_n /T_(n−1) )=(((√(n+1)) −(√n))/(nln(n+1)))×(((n−1)ln(n))/((√n) −(√(n−1))))    =((1−(√(n/(n+1))))/((√(n/(n+1))) −(√((n−1)/(n+1)))))×(1−(1/n))×((lnn)/(ln(n+1)))  =((1−(√(1/(1+(1/n)))))/(√(1/(1+(1/n)))))×(1−(1/n))×((lnn)/(ln(n+1)))  when n→∞  =((1−(√(1/(1+0))))/(√(1/(1+0))))×(1−0)×((lnn)/(ln(n+1)))  =0  so convergent...                    lip_(n→∞) (T_n /T_(n−1) )

$$\frac{{T}_{{n}} }{{T}_{{n}−\mathrm{1}} }=\frac{\sqrt{{n}+\mathrm{1}}\:−\sqrt{{n}}}{{nln}\left({n}+\mathrm{1}\right)}×\frac{\left({n}−\mathrm{1}\right){ln}\left({n}\right)}{\sqrt{{n}}\:−\sqrt{{n}−\mathrm{1}}} \\ $$$$ \\ $$$$=\frac{\mathrm{1}−\sqrt{\frac{{n}}{{n}+\mathrm{1}}}}{\sqrt{\frac{{n}}{{n}+\mathrm{1}}}\:−\sqrt{\frac{{n}−\mathrm{1}}{{n}+\mathrm{1}}}}×\left(\mathrm{1}−\frac{\mathrm{1}}{{n}}\right)×\frac{{lnn}}{{ln}\left({n}+\mathrm{1}\right)} \\ $$$$=\frac{\mathrm{1}−\sqrt{\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{{n}}}}}{\sqrt{\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{{n}}}}}×\left(\mathrm{1}−\frac{\mathrm{1}}{{n}}\right)×\frac{{lnn}}{{ln}\left({n}+\mathrm{1}\right)} \\ $$$${when}\:{n}\rightarrow\infty \\ $$$$=\frac{\mathrm{1}−\sqrt{\frac{\mathrm{1}}{\mathrm{1}+\mathrm{0}}}}{\sqrt{\frac{\mathrm{1}}{\mathrm{1}+\mathrm{0}}}}×\left(\mathrm{1}−\mathrm{0}\right)×\frac{{lnn}}{{ln}\left({n}+\mathrm{1}\right)} \\ $$$$=\mathrm{0}\:\:{so}\:{convergent}... \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{li}{p}}\frac{{T}_{{n}} }{{T}_{{n}−\mathrm{1}} } \\ $$$$ \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 12/Jan/19

Terms of Service

Privacy Policy

Contact: info@tinkutara.com