Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 52731 by ajfour last updated on 12/Jan/19

Commented by MJS last updated on 12/Jan/19

for b=a (circle) the equilateral triangle is  the one with minimum perimeter.  we can draw an equilateral triangle for a  circle with r=a and then compress with  the factor (a/b) [P= ((x),(y) ) → P′= ((x),(((b/a)y)) )]    A′= (((acos α)),((bsin α)) )  B′= (((acos (α+120°))),((bsin (α+120°))) )  C′= (((acos (α−120°))),((bsin (α−120°))) )  now calculate the perimeter p(α) and find  its min/max p′(α)=0  sorry I have no time at the moment

$$\mathrm{for}\:{b}={a}\:\left(\mathrm{circle}\right)\:\mathrm{the}\:\mathrm{equilateral}\:\mathrm{triangle}\:\mathrm{is} \\ $$$$\mathrm{the}\:\mathrm{one}\:\mathrm{with}\:\mathrm{minimum}\:\mathrm{perimeter}. \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{draw}\:\mathrm{an}\:\mathrm{equilateral}\:\mathrm{triangle}\:\mathrm{for}\:\mathrm{a} \\ $$$$\mathrm{circle}\:\mathrm{with}\:{r}={a}\:\mathrm{and}\:\mathrm{then}\:\mathrm{compress}\:\mathrm{with} \\ $$$$\mathrm{the}\:\mathrm{factor}\:\frac{{a}}{{b}}\:\left[{P}=\begin{pmatrix}{{x}}\\{{y}}\end{pmatrix}\:\rightarrow\:{P}'=\begin{pmatrix}{{x}}\\{\frac{{b}}{{a}}{y}}\end{pmatrix}\right] \\ $$$$ \\ $$$${A}'=\begin{pmatrix}{{a}\mathrm{cos}\:\alpha}\\{{b}\mathrm{sin}\:\alpha}\end{pmatrix}\:\:{B}'=\begin{pmatrix}{{a}\mathrm{cos}\:\left(\alpha+\mathrm{120}°\right)}\\{{b}\mathrm{sin}\:\left(\alpha+\mathrm{120}°\right)}\end{pmatrix}\:\:{C}'=\begin{pmatrix}{{a}\mathrm{cos}\:\left(\alpha−\mathrm{120}°\right)}\\{{b}\mathrm{sin}\:\left(\alpha−\mathrm{120}°\right)}\end{pmatrix} \\ $$$$\mathrm{now}\:\mathrm{calculate}\:\mathrm{the}\:\mathrm{perimeter}\:{p}\left(\alpha\right)\:\mathrm{and}\:\mathrm{find} \\ $$$$\mathrm{its}\:\mathrm{min}/\mathrm{max}\:{p}'\left(\alpha\right)=\mathrm{0} \\ $$$$\mathrm{sorry}\:\mathrm{I}\:\mathrm{have}\:\mathrm{no}\:\mathrm{time}\:\mathrm{at}\:\mathrm{the}\:\mathrm{moment} \\ $$

Commented by ajfour last updated on 12/Jan/19

The △ circumscribing the ellipse  shall be of minimum perimeter  in which of the two shown  orientations?(if a>b)  or can it be so in some other  orientation(may be equilateral)?  Find its sides in terms of a and b.

$${The}\:\bigtriangleup\:{circumscribing}\:{the}\:{ellipse} \\ $$$${shall}\:{be}\:{of}\:{minimum}\:{perimeter} \\ $$$${in}\:{which}\:{of}\:{the}\:{two}\:{shown} \\ $$$${orientations}?\left({if}\:{a}>{b}\right) \\ $$$${or}\:{can}\:{it}\:{be}\:{so}\:{in}\:{some}\:{other} \\ $$$${orientation}\left({may}\:{be}\:{equilateral}\right)? \\ $$$${Find}\:{its}\:{sides}\:{in}\:{terms}\:{of}\:{a}\:{and}\:{b}. \\ $$

Commented by mr W last updated on 12/Jan/19

i think there is no other orientation  than the two shown.

$${i}\:{think}\:{there}\:{is}\:{no}\:{other}\:{orientation} \\ $$$${than}\:{the}\:{two}\:{shown}. \\ $$

Commented by ajfour last updated on 12/Jan/19

please go ahead; sides of the △ Sir?

$${please}\:{go}\:{ahead};\:{sides}\:{of}\:{the}\:\bigtriangleup\:{Sir}? \\ $$

Commented by ajfour last updated on 12/Jan/19

wont the triangle sides become  curvilinear by such compression,  Sir ?

$${wont}\:{the}\:{triangle}\:{sides}\:{become} \\ $$$${curvilinear}\:{by}\:{such}\:{compression}, \\ $$$${Sir}\:? \\ $$

Commented by MJS last updated on 12/Jan/19

no. it′s linear  y=kx+d ⇔ P= ((x),((kx+d)) ) → P′= ((x),(((b/a)(kx+d))) ) ⇔ y=((bk)/a)x+((bd)/a)  straight lines stay straight lines

$$\mathrm{no}.\:\mathrm{it}'\mathrm{s}\:\mathrm{linear} \\ $$$${y}={kx}+{d}\:\Leftrightarrow\:{P}=\begin{pmatrix}{{x}}\\{{kx}+{d}}\end{pmatrix}\:\rightarrow\:{P}'=\begin{pmatrix}{{x}}\\{\frac{{b}}{{a}}\left({kx}+{d}\right)}\end{pmatrix}\:\Leftrightarrow\:{y}=\frac{{bk}}{{a}}{x}+\frac{{bd}}{{a}} \\ $$$$\mathrm{straight}\:\mathrm{lines}\:\mathrm{stay}\:\mathrm{straight}\:\mathrm{lines} \\ $$

Commented by ajfour last updated on 12/Jan/19

Thanks MjS Sir, i′ll have to practice  this concept.  Then i can   appreciate your solution much more.

$${Thanks}\:{MjS}\:{Sir},\:{i}'{ll}\:{have}\:{to}\:{practice} \\ $$$${this}\:{concept}.\:\:{Then}\:{i}\:{can}\: \\ $$$${appreciate}\:{your}\:{solution}\:{much}\:{more}. \\ $$

Commented by MJS last updated on 12/Jan/19

anyway this doesn′t lead to the smallest  possible perimeter... ellipses are strange  figures

$$\mathrm{anyway}\:\mathrm{this}\:\mathrm{doesn}'\mathrm{t}\:\mathrm{lead}\:\mathrm{to}\:\mathrm{the}\:\mathrm{smallest} \\ $$$$\mathrm{possible}\:\mathrm{perimeter}...\:\mathrm{ellipses}\:\mathrm{are}\:\mathrm{strange} \\ $$$$\mathrm{figures} \\ $$

Commented by ajfour last updated on 12/Jan/19

do you mean some other orientation  then shall give minimum perimeter,  other than the two shown in question?

$${do}\:{you}\:{mean}\:{some}\:{other}\:{orientation} \\ $$$${then}\:{shall}\:{give}\:{minimum}\:{perimeter}, \\ $$$${other}\:{than}\:{the}\:{two}\:{shown}\:{in}\:{question}? \\ $$

Commented by MJS last updated on 12/Jan/19

I′m not sure. but MrW′s method leads to  smaller perimeter than mine. so mine is not  useful in this case

$$\mathrm{I}'\mathrm{m}\:\mathrm{not}\:\mathrm{sure}.\:\mathrm{but}\:\mathrm{MrW}'\mathrm{s}\:\mathrm{method}\:\mathrm{leads}\:\mathrm{to} \\ $$$$\mathrm{smaller}\:\mathrm{perimeter}\:\mathrm{than}\:\mathrm{mine}.\:\mathrm{so}\:\mathrm{mine}\:\mathrm{is}\:\mathrm{not} \\ $$$$\mathrm{useful}\:\mathrm{in}\:\mathrm{this}\:\mathrm{case} \\ $$

Commented by ajfour last updated on 26/Jan/19

this might be required again in this  trapezium problem..thought of  reviewing it!

$${this}\:{might}\:{be}\:{required}\:{again}\:{in}\:{this} \\ $$$${trapezium}\:{problem}..{thought}\:{of} \\ $$$${reviewing}\:{it}! \\ $$

Answered by mr W last updated on 12/Jan/19

let μ=(a/b)  let ∠RPQ=θ, (1/t)=tan θ  Q(0,h)  eqn. of PQ:  (x/t)+y=h  due to tangency:  (a^2 /t^2 )+b^2 =h^2   ⇒h=(b/t)(√(μ^2 +t^2 ))  RP=2(b+h)(1/(tan θ))=2(b+h)t  QP=(b+h)(1/(sin θ))=(b+h)(√(1+t^2 ))  perimeter U=RP+2QP  U=2(b+h)(t+(√(1+t^2 )))  U=2b[1+(√(1+((μ/t))^2 ))](t+(√(1+t^2 )))  (U/(2b))=f(t)=[1+(√(1+((μ/t))^2 ))](t+(√(1+t^2 )))  f′(t)=((2((μ/t))(−(μ/t^2 )))/(2(√(1+((μ/t))^2 ))))(t+(√(1+t^2 )))+[1+(√(1+((μ/t))^2 ))](1+((2t)/(2(√(1+t^2 )))))=0  (μ^2 /(t^3 (√(1+((μ/t))^2 ))))=[1+(√(1+((μ/t))^2 ))]((1/(√(1+t^2 ))))  μ^2 (√(1+t^2 ))=t^3 [1+(μ^2 /t^2 )+(√(1+((μ/t))^2 ))]  ⇒μ^2 ((√(1+t^2 ))−t)=t^2 (t+(√(μ^2 +t^2 )))  ⇒solve for t=t(μ)...    example μ=(a/b)=2:  ⇒t=0.8045⇒f(t)=7.6828⇒U=15.3656b    with orientation 2: μ=(1/2)  ⇒t=0.4022⇒f(t)=3.8414⇒U=7.6828a=15.3656b    i.e. both orientations give the same  miminum perimeter.  RP=2b[1+(√(1+((μ/t))^2 ))]t=5.92b  PQ=RQ=b[1+(√(1+((μ/t))^2 ))](√(1+t^2 ))=4.72b

$${let}\:\mu=\frac{{a}}{{b}} \\ $$$${let}\:\angle{RPQ}=\theta,\:\frac{\mathrm{1}}{{t}}=\mathrm{tan}\:\theta \\ $$$${Q}\left(\mathrm{0},{h}\right) \\ $$$${eqn}.\:{of}\:{PQ}: \\ $$$$\frac{{x}}{{t}}+{y}={h} \\ $$$${due}\:{to}\:{tangency}: \\ $$$$\frac{{a}^{\mathrm{2}} }{{t}^{\mathrm{2}} }+{b}^{\mathrm{2}} ={h}^{\mathrm{2}} \\ $$$$\Rightarrow{h}=\frac{{b}}{{t}}\sqrt{\mu^{\mathrm{2}} +{t}^{\mathrm{2}} } \\ $$$${RP}=\mathrm{2}\left({b}+{h}\right)\frac{\mathrm{1}}{\mathrm{tan}\:\theta}=\mathrm{2}\left({b}+{h}\right){t} \\ $$$${QP}=\left({b}+{h}\right)\frac{\mathrm{1}}{\mathrm{sin}\:\theta}=\left({b}+{h}\right)\sqrt{\mathrm{1}+{t}^{\mathrm{2}} } \\ $$$${perimeter}\:{U}={RP}+\mathrm{2}{QP} \\ $$$${U}=\mathrm{2}\left({b}+{h}\right)\left({t}+\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\right) \\ $$$${U}=\mathrm{2}{b}\left[\mathrm{1}+\sqrt{\mathrm{1}+\left(\frac{\mu}{{t}}\right)^{\mathrm{2}} }\right]\left({t}+\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\right) \\ $$$$\frac{{U}}{\mathrm{2}{b}}={f}\left({t}\right)=\left[\mathrm{1}+\sqrt{\mathrm{1}+\left(\frac{\mu}{{t}}\right)^{\mathrm{2}} }\right]\left({t}+\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\right) \\ $$$${f}'\left({t}\right)=\frac{\mathrm{2}\left(\frac{\mu}{{t}}\right)\left(−\frac{\mu}{{t}^{\mathrm{2}} }\right)}{\mathrm{2}\sqrt{\mathrm{1}+\left(\frac{\mu}{{t}}\right)^{\mathrm{2}} }}\left({t}+\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\right)+\left[\mathrm{1}+\sqrt{\mathrm{1}+\left(\frac{\mu}{{t}}\right)^{\mathrm{2}} }\right]\left(\mathrm{1}+\frac{\mathrm{2}{t}}{\mathrm{2}\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}\right)=\mathrm{0} \\ $$$$\frac{\mu^{\mathrm{2}} }{{t}^{\mathrm{3}} \sqrt{\mathrm{1}+\left(\frac{\mu}{{t}}\right)^{\mathrm{2}} }}=\left[\mathrm{1}+\sqrt{\mathrm{1}+\left(\frac{\mu}{{t}}\right)^{\mathrm{2}} }\right]\left(\frac{\mathrm{1}}{\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}\right) \\ $$$$\mu^{\mathrm{2}} \sqrt{\mathrm{1}+{t}^{\mathrm{2}} }={t}^{\mathrm{3}} \left[\mathrm{1}+\frac{\mu^{\mathrm{2}} }{{t}^{\mathrm{2}} }+\sqrt{\mathrm{1}+\left(\frac{\mu}{{t}}\right)^{\mathrm{2}} }\right] \\ $$$$\Rightarrow\mu^{\mathrm{2}} \left(\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }−{t}\right)={t}^{\mathrm{2}} \left({t}+\sqrt{\mu^{\mathrm{2}} +{t}^{\mathrm{2}} }\right) \\ $$$$\Rightarrow{solve}\:{for}\:{t}={t}\left(\mu\right)... \\ $$$$ \\ $$$${example}\:\mu=\frac{{a}}{{b}}=\mathrm{2}: \\ $$$$\Rightarrow{t}=\mathrm{0}.\mathrm{8045}\Rightarrow{f}\left({t}\right)=\mathrm{7}.\mathrm{6828}\Rightarrow{U}=\mathrm{15}.\mathrm{3656}{b} \\ $$$$ \\ $$$${with}\:{orientation}\:\mathrm{2}:\:\mu=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow{t}=\mathrm{0}.\mathrm{4022}\Rightarrow{f}\left({t}\right)=\mathrm{3}.\mathrm{8414}\Rightarrow{U}=\mathrm{7}.\mathrm{6828}{a}=\mathrm{15}.\mathrm{3656}{b} \\ $$$$ \\ $$$${i}.{e}.\:{both}\:{orientations}\:{give}\:{the}\:{same} \\ $$$${miminum}\:{perimeter}. \\ $$$${RP}=\mathrm{2}{b}\left[\mathrm{1}+\sqrt{\mathrm{1}+\left(\frac{\mu}{{t}}\right)^{\mathrm{2}} }\right]{t}=\mathrm{5}.\mathrm{92}{b} \\ $$$${PQ}={RQ}={b}\left[\mathrm{1}+\sqrt{\mathrm{1}+\left(\frac{\mu}{{t}}\right)^{\mathrm{2}} }\right]\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }=\mathrm{4}.\mathrm{72}{b} \\ $$

Commented by ajfour last updated on 12/Jan/19

Very Nice! Understood Sir, i had to  go along writing it.

$$\mathcal{V}{ery}\:\mathcal{N}{ice}!\:{Understood}\:{Sir},\:{i}\:{had}\:{to} \\ $$$${go}\:{along}\:{writing}\:{it}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com