Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 5280 by Rasheed Soomro last updated on 04/May/16

A delegation of 4 people is to be  selected from 5 women and 6  men.  Find the number of possible delegations if  (a) there are no restrictions,   (b) there is at least 1 woman,  (c) there are at least 2 women.  One of the men cannot get along with    one of the women. Find the number of  delegations which include this particular   man or woman, but not both.

$$\mathrm{A}\:\mathrm{delegation}\:\mathrm{of}\:\mathrm{4}\:\mathrm{people}\:\mathrm{is}\:\mathrm{to}\:\mathrm{be} \\ $$$$\mathrm{selected}\:\mathrm{from}\:\mathrm{5}\:\mathrm{women}\:\mathrm{and}\:\mathrm{6}\:\:\mathrm{men}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{possible}\:\mathrm{delegations}\:\mathrm{if} \\ $$$$\left(\boldsymbol{\mathrm{a}}\right)\:\mathrm{there}\:\mathrm{are}\:\mathrm{no}\:\mathrm{restrictions}, \\ $$$$\:\left(\boldsymbol{\mathrm{b}}\right)\:\mathrm{there}\:\mathrm{is}\:\mathrm{at}\:\mathrm{least}\:\mathrm{1}\:\mathrm{woman}, \\ $$$$\left(\boldsymbol{\mathrm{c}}\right)\:\mathrm{there}\:\mathrm{are}\:\mathrm{at}\:\mathrm{least}\:\mathrm{2}\:\mathrm{women}. \\ $$$$\mathrm{One}\:\mathrm{of}\:\mathrm{the}\:\mathrm{men}\:\mathrm{cannot}\:\mathrm{get}\:\mathrm{along}\:\mathrm{with}\:\: \\ $$$$\mathrm{one}\:\mathrm{of}\:\mathrm{the}\:\mathrm{women}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of} \\ $$$$\mathrm{delegations}\:\mathrm{which}\:\mathrm{include}\:\mathrm{this}\:\mathrm{particular}\: \\ $$$$\mathrm{man}\:\mathrm{or}\:\mathrm{woman},\:\mathrm{but}\:\mathrm{not}\:\mathrm{both}. \\ $$$$ \\ $$

Answered by Yozzii last updated on 04/May/16

(a) no. of ways= (((5+6)),(4) )= (((11)),(4) )=330    (b) no. of ways=total no. of possible combinations−no. of groups with only men                                = (((5+6)),(4) )− ((6),(4) )                                =315  Set theoretically, if we know the cardinality  of the finite universal set U and the cardinality  of one of two disjoint sets A and B, and  U=A∪B,then ∣A∣+∣B∣=∣U∣.  This situation has   U=all possible delegations  A=delegations with only men,  B=delegations with at least one woman.  ⇒∣B∣=∣U∣−∣A∣.    (c)We can subtract from the total number  of possible combinations those combinations  that are all men and those combinations  that include 3 men and 1 woman.  By the And counting principle,  no. of combinations of 3 men and 1 woman  is equal to  ((6),(3) )× ((5),(1) ).  ⇒no. of ways required= (((5+6)),(4) )−{ ((6),(4) )+ ((6),(3) )× ((5),(1) )}                               =315−100                               =215  (d)no. of ways= (((11−2)),(3) )+ (((11−2)),(3) )=2 ((9),(3) )=168

$$\left(\boldsymbol{\mathrm{a}}\right)\:\mathrm{no}.\:\mathrm{of}\:\mathrm{ways}=\begin{pmatrix}{\mathrm{5}+\mathrm{6}}\\{\mathrm{4}}\end{pmatrix}=\begin{pmatrix}{\mathrm{11}}\\{\mathrm{4}}\end{pmatrix}=\mathrm{330} \\ $$$$ \\ $$$$\left(\boldsymbol{\mathrm{b}}\right)\:\mathrm{no}.\:\mathrm{of}\:\mathrm{ways}=\mathrm{total}\:\mathrm{no}.\:\mathrm{of}\:\mathrm{possible}\:\mathrm{combinations}−\mathrm{no}.\:\mathrm{of}\:\mathrm{groups}\:\mathrm{with}\:\mathrm{only}\:\mathrm{men} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\begin{pmatrix}{\mathrm{5}+\mathrm{6}}\\{\mathrm{4}}\end{pmatrix}−\begin{pmatrix}{\mathrm{6}}\\{\mathrm{4}}\end{pmatrix} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{315} \\ $$$$\mathrm{Set}\:\mathrm{theoretically},\:\mathrm{if}\:\mathrm{we}\:\mathrm{know}\:\mathrm{the}\:\mathrm{cardinality} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{finite}\:\mathrm{universal}\:\mathrm{set}\:\mathrm{U}\:\mathrm{and}\:\mathrm{the}\:\mathrm{cardinality} \\ $$$$\mathrm{of}\:\mathrm{one}\:\mathrm{of}\:\mathrm{two}\:\mathrm{disjoint}\:\mathrm{sets}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B},\:\mathrm{and} \\ $$$$\mathrm{U}=\mathrm{A}\cup\mathrm{B},\mathrm{then}\:\mid\mathrm{A}\mid+\mid\mathrm{B}\mid=\mid\mathrm{U}\mid. \\ $$$$\mathrm{This}\:\mathrm{situation}\:\mathrm{has}\: \\ $$$$\mathrm{U}=\mathrm{all}\:\mathrm{possible}\:\mathrm{delegations} \\ $$$$\mathrm{A}=\mathrm{delegations}\:\mathrm{with}\:\mathrm{only}\:\mathrm{men}, \\ $$$$\mathrm{B}=\mathrm{delegations}\:\mathrm{with}\:\mathrm{at}\:\mathrm{least}\:\mathrm{one}\:\mathrm{woman}. \\ $$$$\Rightarrow\mid\mathrm{B}\mid=\mid\mathrm{U}\mid−\mid\mathrm{A}\mid. \\ $$$$ \\ $$$$\left(\boldsymbol{\mathrm{c}}\right)\mathrm{W}{e}\:\mathrm{can}\:\mathrm{subtract}\:\mathrm{from}\:\mathrm{the}\:\mathrm{total}\:\mathrm{number} \\ $$$$\mathrm{of}\:\mathrm{possible}\:\mathrm{combinations}\:\mathrm{those}\:\mathrm{combinations} \\ $$$$\mathrm{that}\:\mathrm{are}\:\mathrm{all}\:\mathrm{men}\:\mathrm{and}\:\mathrm{those}\:\mathrm{combinations} \\ $$$$\mathrm{that}\:\mathrm{include}\:\mathrm{3}\:\mathrm{men}\:\mathrm{and}\:\mathrm{1}\:\mathrm{woman}. \\ $$$$\mathrm{By}\:\mathrm{the}\:\mathrm{And}\:\mathrm{counting}\:\mathrm{principle}, \\ $$$$\mathrm{no}.\:\mathrm{of}\:\mathrm{combinations}\:\mathrm{of}\:\mathrm{3}\:\mathrm{men}\:\mathrm{and}\:\mathrm{1}\:\mathrm{woman} \\ $$$$\mathrm{is}\:\mathrm{equal}\:\mathrm{to}\:\begin{pmatrix}{\mathrm{6}}\\{\mathrm{3}}\end{pmatrix}×\begin{pmatrix}{\mathrm{5}}\\{\mathrm{1}}\end{pmatrix}. \\ $$$$\Rightarrow\mathrm{no}.\:\mathrm{of}\:\mathrm{ways}\:\mathrm{required}=\begin{pmatrix}{\mathrm{5}+\mathrm{6}}\\{\mathrm{4}}\end{pmatrix}−\left\{\begin{pmatrix}{\mathrm{6}}\\{\mathrm{4}}\end{pmatrix}+\begin{pmatrix}{\mathrm{6}}\\{\mathrm{3}}\end{pmatrix}×\begin{pmatrix}{\mathrm{5}}\\{\mathrm{1}}\end{pmatrix}\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{315}−\mathrm{100} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\mathrm{215} \\ $$$$\left(\boldsymbol{\mathrm{d}}\right)\mathrm{no}.\:\mathrm{of}\:\mathrm{ways}=\begin{pmatrix}{\mathrm{11}−\mathrm{2}}\\{\mathrm{3}}\end{pmatrix}+\begin{pmatrix}{\mathrm{11}−\mathrm{2}}\\{\mathrm{3}}\end{pmatrix}=\mathrm{2}\begin{pmatrix}{\mathrm{9}}\\{\mathrm{3}}\end{pmatrix}=\mathrm{168} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com