All Questions Topic List
Permutation and Combination Questions
Previous in All Question Next in All Question
Previous in Permutation and Combination Next in Permutation and Combination
Question Number 5280 by Rasheed Soomro last updated on 04/May/16
Adelegationof4peopleistobeselectedfrom5womenand6men.Findthenumberofpossibledelegationsif(a)therearenorestrictions,(b)thereisatleast1woman,(c)thereareatleast2women.Oneofthemencannotgetalongwithoneofthewomen.Findthenumberofdelegationswhichincludethisparticularmanorwoman,butnotboth.
Answered by Yozzii last updated on 04/May/16
(a)no.ofways=(5+64)=(114)=330(b)no.ofways=totalno.ofpossiblecombinations−no.ofgroupswithonlymen=(5+64)−(64)=315Settheoretically,ifweknowthecardinalityofthefiniteuniversalsetUandthecardinalityofoneoftwodisjointsetsAandB,andU=A∪B,then∣A∣+∣B∣=∣U∣.ThissituationhasU=allpossibledelegationsA=delegationswithonlymen,B=delegationswithatleastonewoman.⇒∣B∣=∣U∣−∣A∣.(c)Wecansubtractfromthetotalnumberofpossiblecombinationsthosecombinationsthatareallmenandthosecombinationsthatinclude3menand1woman.BytheAndcountingprinciple,no.ofcombinationsof3menand1womanisequalto(63)×(51).⇒no.ofwaysrequired=(5+64)−{(64)+(63)×(51)}=315−100=215(d)no.ofways=(11−23)+(11−23)=2(93)=168
Terms of Service
Privacy Policy
Contact: info@tinkutara.com