Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 52814 by ajfour last updated on 13/Jan/19

Commented by ajfour last updated on 13/Jan/19

Initially rod whose one end is  pivoted to centre of disc, is kept  vertical and released, Find v(θ).  Friction is sufficient say,   coefficient is μ.

$${Initially}\:{rod}\:{whose}\:{one}\:{end}\:{is} \\ $$$${pivoted}\:{to}\:{centre}\:{of}\:{disc},\:{is}\:{kept} \\ $$$${vertical}\:{and}\:{released},\:{Find}\:{v}\left(\theta\right). \\ $$$${Friction}\:{is}\:{sufficient}\:{say},\: \\ $$$${coefficient}\:{is}\:\mu. \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 13/Jan/19

mg×(l/2)(1−cosθ)=(1/2)(((ml^2 )/3))(w_(rod) )^2 +(1/2)mV^2 +(1/2)MV^2 +(1/2)((1/2)MR^2 )(w_(disc) )^2   above eqn  loss o P.E=k.E (rotational+liniear )for both disc and rod    (((ml^2 )/3))w_(rod) =((1/2)MR^2 )w_(disc) ←conservation of angular momentum  (((ml^2 )/3))w_(rod) =(((MR^2 )/2))((V/R))  w_(rod) =((MR^2 ×3)/(2×ml^2 ))×(V/R)  w_(rod) =((3M)/(2m))×(((RV)/l^2 ))  mg×(l/2)(1−cosθ)=(1/2)(((ml^2 )/3))(((9M^2 )/(4m^2 ))×((R^2 V^2 )/l^4 ))+(1/2)mV^2 +(1/2)MV^2 +(1/2)((1/2)MR^2 )((V^2 /R^2 ))  mg×(l/2)(1−cosθ)=(3/8)((M^2 /m))((R^2 /l^2 ))V^2 +(1/2)MV^2 +(1/4)MV^2   =(3/8)((M^2 /m))((R^2 /l^2 ))V^2 +(3/4)MV^2   =(3/4)MV^2 (1+(1/2)×(M/m)×(R^2 /l^2 ))  V^2 =((mgl(1−cosθ))/(2×(3/4)M(1+(1/2)×(M/m)×(R^2 /l^2 ))))  V^2 =((2mgl(1−cosθ))/(3M(1+((MR^2 )/(2ml^2 )))))  is it ok...

$${mg}×\frac{{l}}{\mathrm{2}}\left(\mathrm{1}−{cos}\theta\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{ml}^{\mathrm{2}} }{\mathrm{3}}\right)\left({w}_{{rod}} \right)^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{mV}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{MV}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{2}}{MR}^{\mathrm{2}} \right)\left({w}_{{disc}} \right)^{\mathrm{2}} \\ $$$${above}\:{eqn}\:\:{loss}\:{o}\:{P}.{E}={k}.{E}\:\left({rotational}+{liniear}\:\right){for}\:{both}\:{disc}\:{and}\:{rod} \\ $$$$ \\ $$$$\left(\frac{{ml}^{\mathrm{2}} }{\mathrm{3}}\right){w}_{{rod}} =\left(\frac{\mathrm{1}}{\mathrm{2}}{MR}^{\mathrm{2}} \right){w}_{{disc}} \leftarrow{conservation}\:{of}\:{angular}\:{momentum} \\ $$$$\left(\frac{{ml}^{\mathrm{2}} }{\mathrm{3}}\right){w}_{{rod}} =\left(\frac{{MR}^{\mathrm{2}} }{\mathrm{2}}\right)\left(\frac{{V}}{{R}}\right) \\ $$$${w}_{{rod}} =\frac{{MR}^{\mathrm{2}} ×\mathrm{3}}{\mathrm{2}×{ml}^{\mathrm{2}} }×\frac{{V}}{{R}} \\ $$$${w}_{{rod}} =\frac{\mathrm{3}{M}}{\mathrm{2}{m}}×\left(\frac{{RV}}{{l}^{\mathrm{2}} }\right) \\ $$$${mg}×\frac{{l}}{\mathrm{2}}\left(\mathrm{1}−{cos}\theta\right)=\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{{ml}^{\mathrm{2}} }{\mathrm{3}}\right)\left(\frac{\mathrm{9}{M}^{\mathrm{2}} }{\mathrm{4}{m}^{\mathrm{2}} }×\frac{{R}^{\mathrm{2}} {V}^{\mathrm{2}} }{{l}^{\mathrm{4}} }\right)+\frac{\mathrm{1}}{\mathrm{2}}{mV}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{MV}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\mathrm{1}}{\mathrm{2}}{MR}^{\mathrm{2}} \right)\left(\frac{{V}^{\mathrm{2}} }{{R}^{\mathrm{2}} }\right) \\ $$$${mg}×\frac{{l}}{\mathrm{2}}\left(\mathrm{1}−{cos}\theta\right)=\frac{\mathrm{3}}{\mathrm{8}}\left(\frac{{M}^{\mathrm{2}} }{{m}}\right)\left(\frac{{R}^{\mathrm{2}} }{{l}^{\mathrm{2}} }\right){V}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{MV}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{4}}{MV}^{\mathrm{2}} \\ $$$$=\frac{\mathrm{3}}{\mathrm{8}}\left(\frac{{M}^{\mathrm{2}} }{{m}}\right)\left(\frac{{R}^{\mathrm{2}} }{{l}^{\mathrm{2}} }\right){V}^{\mathrm{2}} +\frac{\mathrm{3}}{\mathrm{4}}{MV}^{\mathrm{2}} \\ $$$$=\frac{\mathrm{3}}{\mathrm{4}}{MV}^{\mathrm{2}} \left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}×\frac{{M}}{{m}}×\frac{{R}^{\mathrm{2}} }{{l}^{\mathrm{2}} }\right) \\ $$$${V}^{\mathrm{2}} =\frac{{mgl}\left(\mathrm{1}−{cos}\theta\right)}{\mathrm{2}×\frac{\mathrm{3}}{\mathrm{4}}{M}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}×\frac{{M}}{{m}}×\frac{{R}^{\mathrm{2}} }{{l}^{\mathrm{2}} }\right)} \\ $$$${V}^{\mathrm{2}} =\frac{\mathrm{2}{mgl}\left(\mathrm{1}−{cos}\theta\right)}{\mathrm{3}{M}\left(\mathrm{1}+\frac{{MR}^{\mathrm{2}} }{\mathrm{2}{ml}^{\mathrm{2}} }\right)} \\ $$$${is}\:{it}\:{ok}... \\ $$$$ \\ $$

Commented by ajfour last updated on 13/Jan/19

i shall go through sir, let some time..

$${i}\:{shall}\:{go}\:{through}\:{sir},\:{let}\:{some}\:{time}.. \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 13/Jan/19

ok sir

$${ok}\:{sir} \\ $$

Commented by tanmay.chaudhury50@gmail.com last updated on 14/Jan/19

ok sir...

$${ok}\:{sir}... \\ $$

Commented by ajfour last updated on 14/Jan/19

Tanmay Sir, i think in conservation  of angular momentum we should  also include  MVR..

$${Tanmay}\:{Sir},\:{i}\:{think}\:{in}\:{conservation} \\ $$$${of}\:{angular}\:{momentum}\:{we}\:{should} \\ $$$${also}\:{include}\:\:{MVR}.. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com