Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 52841 by Tawa1 last updated on 13/Jan/19

Commented by maxmathsup by imad last updated on 14/Jan/19

 π →180^o    α→k^o  ⇒180^ .α =kπ ⇒α =((kπ)/(180)) ⇒  S=Σ_(k=0) ^(90)  sin^2 (((kπ)/(180)))  generally let determine S_n =Σ_(k=0) ^n  sin^2 (((kπ)/(180))) ⇒  S_n =Σ_(k=0) ^n  ((1−cos(((kπ)/(90))))/2) =((n+1)/2) −(1/2)Σ_(k=0) ^n  cos(((kπ)/(90))) but  Σ_(k=0) ^n  cos(((kπ)/(90))) =Re(Σ_(k=0) ^n  e^(i((kπ)/(90))) )  and Σ_(k=0) ^n  e^(i((kπ)/(90)))  =Σ_(k=0) ^n  (e^((iπ)/(90)) )^k   =((1−e^(i(n+1)(π/(90))) )/(1−e^((iπ)/(90)) )) =((1−cos((((n+1)π)/(90)))−isin((((n+1)π)/(90))))/(1−cos((π/(90)))−i sin((π/(90)))))   =((2sin^2 ((((n+1)π)/(180)))−2i sin((((n+1)π)/(180)))cos((((n+1)π)/(180))))/(2sin^2 ((π/(180)))−2isin((π/(180)))cos((π/(180)))))  =((−isin((((n+1)π)/(180)))( e^(i(((n+1)π)/(180))) ))/(−isin((π/(180))) e^((iπ)/(180)) )) =((sin((((n+1)π)/(180))))/(sin((π/(180))))) e^((inπ)/(180))   ⇒  Σ_(k=0) ^n  cos(((kπ)/(90))) =((sin((((n+1)π)/(180)))cos(((nπ)/(180))))/(sin((π/(180))))) ⇒  S_n =((n+1)/2) −((sin((((n+1)π)/(180)))cos(((nπ)/(180))))/(sin((π/(180))))) ⇒ S =S_(90) =((91)/2) −((sin(((91π)/(180)))cos((π/2)))/(sin((π/(180)))))  =((91)/2) −0 ⇒ S=((91)/2) .

π180oαko180.α=kπα=kπ180S=k=090sin2(kπ180)generallyletdetermineSn=k=0nsin2(kπ180)Sn=k=0n1cos(kπ90)2=n+1212k=0ncos(kπ90)butk=0ncos(kπ90)=Re(k=0neikπ90)andk=0neikπ90=k=0n(eiπ90)k=1ei(n+1)π901eiπ90=1cos((n+1)π90)isin((n+1)π90)1cos(π90)isin(π90)=2sin2((n+1)π180)2isin((n+1)π180)cos((n+1)π180)2sin2(π180)2isin(π180)cos(π180)=isin((n+1)π180)(ei(n+1)π180)isin(π180)eiπ180=sin((n+1)π180)sin(π180)einπ180k=0ncos(kπ90)=sin((n+1)π180)cos(nπ180)sin(π180)Sn=n+12sin((n+1)π180)cos(nπ180)sin(π180)S=S90=912sin(91π180)cos(π2)sin(π180)=9120S=912.

Commented by Tawa1 last updated on 16/Jan/19

God bless you sir

Godblessyousir

Commented by Tawa1 last updated on 17/Jan/19

Sir,  please explain from here sir.       How     S_n  = Σ_(k = 0) ^n  sin^2 (((kπ)/(180)))     becomes     S_n   =  Σ_(k = 0) ^n    ((1 − cos(((kπ)/(90))))/2)   =  ((n + 1)/2) − (1/2) Σ_(k = 0) ^(n )  cos(((kπ)/(90)))    And how 2 becomes     1 − e^(i(π/(90)))   please sir.

Sir,pleaseexplainfromheresir.HowSn=k=0nsin2(kπ180)becomesSn=k=0n1cos(kπ90)2=n+1212k=0ncos(kπ90)Andhow2becomes1eiπ90pleasesir.

Commented by maxmathsup by imad last updated on 19/Jan/19

sir take x=((kπ)/(180)) and use formulalae sin^2 (x)=((1−cos(2x))/2)  also Σ_(k=0) ^n  ((1−cos(((kπ)/(90))))/2) =(1/2)Σ_(k=0) ^n (1) −(1/2)Σ_(k=0) ^n cos(((kπ)/(90))) and   Σ_(k=0) ^n (1)=n+1 (look that Σ_(k=0) ^n a=(n+1)a)

sirtakex=kπ180anduseformulalaesin2(x)=1cos(2x)2alsok=0n1cos(kπ90)2=12k=0n(1)12k=0ncos(kπ90)andk=0n(1)=n+1(lookthatk=0na=(n+1)a)

Answered by tanmay.chaudhury50@gmail.com last updated on 14/Jan/19

1+89=90  so  sin^2 1+sin^2 89                             =sin^2 1+sin^2 (90−1)                               =sin^2 1+cos^2 1                                =1  similarly..  2+88=90  ...  ...  45+45=90    s=(sin^2 1+sin^2 2+sin^2 3+...+sin^2 89)+sin^2 90  s=(sin^2 89+sin^2 88+sin^2 87+..+sin^2 1)+sin^2 90   2s=[(sin^2 1+sin^2 89)+(sin^2 2+sin^2 88)+..+(sin^2 89+sin^2 1)]+(1+1)  2s=[1+1+1...89times]+2  s=((91)/2)=45.5

1+89=90sosin21+sin289=sin21+sin2(901)=sin21+cos21=1similarly..2+88=90......45+45=90s=(sin21+sin22+sin23+...+sin289)+sin290s=(sin289+sin288+sin287+..+sin21)+sin2902s=[(sin21+sin289)+(sin22+sin288)+..+(sin289+sin21)]+(1+1)2s=[1+1+1...89times]+2s=912=45.5

Commented by tanmay.chaudhury50@gmail.com last updated on 14/Jan/19

thank you..God bless all...

thankyou..Godblessall...

Commented by Tawa1 last updated on 14/Jan/19

God bless you sir

Godblessyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com